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Abstract

Let T : E → F be an operator between Banach spaces which, at
the same time, is separable, Rosenthal and decomposing, for example.
Using the real method of interpolation of Lions-Peetre for pairs, it is
proved that there exists a Banach space S, which at the same time is
separable, without copy of `1 and whose dual, S∗, possesses the Radon-
Nikodym property, through which T factors. A technique to produce such
factorization spaces for mixed operators is given. For this is necessary
to prove, first, that many operator ideals possess the strong property of
interpolation for the real method of Lions-Peetre.
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1. Introduction. After 1974, when the famous and celebrated paper of Davis,
Figiel, Johnson and Pe lczyński on factorization of weakly compact operators,
DFJP in short, was published, see [5], B. Beauzamy and S. Heinrich, using
the real method of interpolation of Lions-Peetre, produced more results of this
kind. They proved that the operator ideals of Rosenthal operators, Banach-Saks,
alternate-sign Banach-Saks and decomposing have the factorization property.
In this paper, mainly following a technique developed by Heinrich, see [8], it is
shown that the ideals of separable, Rosenthal, weakly compact, Banach-Saks,
alternate-signs Banach-Saks, decomposing, their dual ideals and many other
ideals (chains), first, possess the strong property of interpolation respect the
real method of interpolation and after, following a technique introduced by
Beauzamy in [2], the factorization theorem for mixed operators is obtained.

A good, and easy example to understand what factorization of a mixed
operator means, is one operator between Banach spaces which at the same time
is weakly compact and separable: it was proved by W. B. Johnson, even before
than DFJP, that such operators can be factored though a separable and reflexive
space.
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If I is an operator ideal, if A and B are interpolation pairs then, the ideal
I possesses the Interpolation Property for a method F of interpolation (see [3],
chap. 2) if the interpolated operator TF : F(A) → F(B) belongs to I when
all (or some) of the extreme operators Ti : Ai → Bi (i = 0, 1), belong to I.
The ideal possesses the Strong Property of Interpolation, SPI in short, if the
interpolated operator TF belongs to I when the induced TJS : J (A) → S(B)
from the intersection into the sum spaces is in I.

The main result of this paper is achieved in §6, theorem 6.2, after a necessary
preamble. In §5, theorem 5.4 it is proved the necessary result on interpolation.

Notation is standard; in any case, unexplained symbols, terms, concepts,
etc., will be found in [3], [8] or [13].

2. Preliminaries. L(E,F ) is the space of all bounded linear operators. An
operator ideal I is a class of bounded linear operators such that the components
I(E,F ) = I

⋂
L(E,F ) satisfy the following conditions:(i) I(E,F ) is a linear

subspace of L(E,F ), (ii) I(E,F ) contains the finite rank operators and (iii) if
R ∈ L(X,E), S ∈ I(E,F ) and T ∈ L(F, Y ) then, TSR ∈ I(X,Y ) (see [8] and
[13]).

The operator ideal is injective if for every isomorphic embedding J ∈ L(F, Y )
one has that T ∈ L(E,F ) and JT ∈ I(E, Y ) implies T ∈ I(E,F ); it is surjective
if for every surjection Q ∈ L(X,E) one has that T ∈ L(E,F ) and TQ ∈ I(X,F )
implies T ∈ I(E,F ). The ideal is closed if the components I(E,F ) are closed
subspaces of L(E,F ) (see [8] and [13], chap. 4).

Every operator ideal I defines a class of Banach spaces, Space(I), in the
following way: E ∈ Space(I) if and only if 1E ∈ I(E,E).

If (Xm)m∈Z is a family of Banach spaces, denote by (
∑
m∈Z

Xm)p, with 1 ≤

p <∞, the space of all the maps (xm)m∈Z, such that xm ∈ Xm with the norm
‖(xm)m∈Z‖ = (

∑
m∈Z
‖xm‖pXm

)1/p < ∞. Denote by Ji the natural embedding of

Xi into (
∑
m∈Z

Xm)p and by Qj the projection of (
∑
m∈Z

Xm)p onto Xj .

Definition 2.1. The ideal I satisfies the
∑
p-condition for 1 ≤ p <∞ (see [8]),

if for any two families (Em)m∈Z and (Fm)m∈Z of Banach spaces the following is
true: if T ∈ L((

∑
m∈Z

Em)p, (
∑
m∈Z

Fm)p) and QjTJi ∈ I(Ei, Fj) for every i, j ∈ Z,

then, T ∈ I((
∑
m∈Z

Em)p, (
∑
m∈Z

Fm)p).

3. The Real Method of Interpolation. Let X = (X0, X1) be an interpo-
lation pair of Banach spaces, that is, X0 and X1 are Banach spaces imbedded
into a Hausdorff topological vector space H. Denote by J (X) the intersection
X0 ∩X1 and by S(X) the sum X0 +X1 with the norms
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‖x‖J (X) = max(‖x‖X0 , ‖x‖X1)

and

‖x‖S(X) = inf
x=x0+x1

(‖x0‖X0 + ‖x1‖X1).

Let t be > 0; define for x ∈ S(X) the K-functional

K(t, x) = K(t, x,X) = inf
x=x0+x1

(‖x0‖X0 + t‖x1‖X1)

and, for x ∈ J (X), the J functional

J(t, x) = J(t, x,X) = max(‖x‖X0 , t‖x‖X1).

For 0 < θ < 1 and 1 ≤ p <∞ the space Kθ,p(X) is that of all x ∈ S(X) for
which [∑

m∈Z
(2−θmK(2m, x))p

]1/p

<∞.

The space Jθ,p(X) consists of those x ∈ S(X) for which there exists a map,
(xm)m∈Z, from Z into J (X), so that

x =
∑
m∈Z

xm (convergence in S(X))

with [∑
m∈Z

(2−θmJ(2m, xm))p
]1/p

<∞.

In each case, the norm is:

‖x‖θ,p;K =

[∑
m∈Z

(2−θmK(2m, x))p
]1/p

and

‖x‖θ,p;J = inf
x= Σxm

[∑
m∈Z

(2−θmJ(2m, xm))p
]1/p

.

The spaces Kθ,p(X) and Jθ,p(X) are interpolation spaces with respect to X.
They are, in fact, equal and their norms are equivalent ([3]). Accordingly, either
Kθ,p(X) or Jθ,p(X) will be the space Xθ,p of the real method of interpolation.

Now, let A = (A0, A1) and B = (B0, B1) be two interpolation pairs. If T :
S(A) → S(B) is a bounded linear operator whose restriction to Ai is bounded
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from Ai into Bi(i = 0, 1) then, one says that T is an interpolation operator
from A into B, and writes T : A → B. In this case the interpolated operator
Tθ,p : Aθ,p → Bθ,p, (0 < θ < 1 and 1 ≤ p <∞), is bounded.

4. Some Classes of Operators.

4.1. An operator T ∈ L(E,F ) is compact if the image T (BE) of the unit ball
of E is relatively compact in the norm topology of F . The operator is weakly
compact if T (BE) is a relatively weakly compact set, or, using the Eberlein-
Smulian Theorem, if and only if every sequence (Txn) with xn ∈ BE admits
a weakly convergent subsequence. The operator T is separable if T (E) is a
separable subspace of F or, equivalently, if T (BE) is a separable subset of F .

T ∈ L(E,F ) is a Rosenthal operator if for each s ∈ L(`1, E) the composition
Ts is not an isomorphic embedding; T is unconditionally summing if for each
s ∈ L(c0, E) the composition Ts is not an isomorphic embedding. In other
words, T does not 8transport′ copies of `1 or c0, respectively. Using Rosenthal
and Bessaga-Pe lczyński theorems, it is easy to obtain the following characteri-
zation of these operators: T is Rosenthal if and only if every bounded sequence
(xn) of E possesses a subsequence (xnk

) such that (Txnk
) is weak Cauchy, that

is, if and only if T (BE) is weakly pre-compact. T is unconditionally summing
if and only if for every sequence (xn) of E which is unconditionally summable
(i.e., for every sequence (xn) such that

∑
n=1,∞

| f(xn) |< ∞ for all f ∈ E∗) the

sequence (Txn) is unconditionally summable in the norm topology of F , see
[10].

T ∈ L(E,F ) has the Banach-Saks property if any bounded sequence (xn) of
E possesses a subsequence (x′n) such that (Tx′n) is Cesàro convergent, i.e., the
sequence of the averages n−1

∑
k=1,n

Tx′k, converges in F . The operator T has

the alternate-signs Banach-Saks property if any bounded sequence (xn) of E
possesses a subsequence (x′n) such that ((−1)nTx′n) is Cesàro convergent, i.e.,
the sequence of the averages n−1

∑
k=1,n

(−1)kTx′k, converges in F . The oper-

ator T has the Banach-Saks-Rosenthal property if any weakly null sequence
(xn) of E possesses a subsequence (x′n) such that the sequence of the averages
n−1

∑
k=1,n

Tx′k, converges in F . See [1] for a thorough study of these operators,

see also [9].
Let (Ω, µ) be a probability space. An operator X ∈ L(L1(Ω, µ), E) is right-

decomposable if there exists a µ-measurable and E-valued kernel x(ω), with ω ∈
Ω, such that for all f ∈ L1(Ω, µ):

X(f) =
∫

Ω

f(ω)x(ω)dµ.

T ∈ L(E,F ) is a Radon-Nikodym operator if TX is right-decomposable for
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every X ∈ (L1(Ω, µ), E).
An operator Z ∈ L(F, (L∞(Ω, µ)) is left-decomposable if there exists a µ-

measurable and F ∗-valued kernel z(ω) such that for all y ∈ F :

Zy(ω) = 〈y, z(ω)〉.

T ∈ L(E,F ) is a decomposing operator if ZT is left decomposable for every
Z ∈ L(F, (L∞(Ω, µ)); see [13], Chap. 24.

The following characterization of decomposing operators is well known, see
[13]: T is decomposing if and only if its dual, T ∗, is a Radon-Nikodym operator.

All the classes of operators defined above are ideals of operators in the sense
of Pietsch. As in [13], capital gothic letters will denote each one of them.
So: K will be the ideal of compact operators, W that of weakly compact, X
separable operators, R Rosenthal operators, U unconditionally summing, Y
Radon-Nikodym and Q that of decomposing operators; see [13] for a detailed
study of these ideals.

Place BS for Banach-Saks operator ideal, ABS for alternate-signs Banach-
Saks and BSR for Banach-Saks-Rosenthal operator ideal. These last ideals are
not treated by Pietsch. See [1] for their study.

All these ideals are closed and injective. Compact, weakly compact, separa-
ble, Rosenthal, Banach-Saks, alternate-signs Banach-Saks and decomposing are
also surjective operator ideals. Neither U nor Y nor BSR are surjective.

A bounded subset A of the space X is called limited if lim
n→∞

sup
x∈A
|x∗n(x)| = 0

for every weak∗-null sequence (x∗n) in X∗, i.e., lim
n→∞

x∗n(x) = 0 uniformly on A.

The operator T ∈ L(E,F ) is limited if T (BE) is a limited subset of F . Clearly,
T is limited if and only if T ∗ : F ∗ → E∗ takes weak∗-null sequences to norm
null sequences, see [4].

4.2. Let C and D be two operator ideals. The product D ◦ C is a new operator
ideal defined as follows: T ∈ L(E,F ) belongs to D ◦ C if there exists a Banach
space G and operators U ∈ C(E,G), V ∈ D(G,F ), such that T = V U .

Heinrich, in [8], Thm. 1.1, proves that if C and D are closed then D ◦ C is
also closed. Always is true that D ◦ C ⊂ D ∩ C but the converse inclusion is
not valid in general. Nevertheless, see [8], Thm. 1.3, if C is injective and D is
surjective then D ◦ C = D ∩ C.

This product is, certainly, associative, non commutative in general, although,
if C and D are closed, injective and surjective operator ideals, the product com-
mutes. The identity element is, of course, L.

Also, is clear that if C is injective and D is surjective, both satisfying the∑
p-condition, 1 ≤ p <∞, then, D ◦ C = D ∩ C satisfies the

∑
p-condition.

Let I be an operator ideal. The operator T ∈ L(E,F ) belongs to the dual
ideal Idual if the adjoint operator T ∗ belongs to I(F ∗, E∗). For example, the
fact that T is decomposing if and only if its dual, T ∗, is a Radon-Nikodym
operator, means that Q = Ydual.

If I is injective, Idual is surjective and if I is surjective, Idual is injective (see
[13], chap. 4). If I is closed, so is Idual. If I satisfies the

∑
p-condition, for all
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p with 1 < p <∞, then Idual satisfies
∑
p-condition for all p with 1 < p <∞.

Some times happens that, depending on the relationship between the ideals,
the product reduces, as for example, the product W◦BS◦R which is equal to R,
or, as in the case of weakly compact operators, for which Wdual = W, etc., (see
[13]).

The product of several operator ideals will be called a chain. For example,
I = R ◦Rdual, I = X ◦W, I = (Q ◦ ABS)dual or I = X ◦Rdual ◦Q, all them
being, certainly, injective, surjective and closed operator ideals, are chains.

Let E and F be Banach spaces. An operator T ∈ chain(E,F ) is a mixed
operator. For example, T ∈ X ◦ Rdual ◦ Q(E,F ), which means that T : E →
F is at the same time a separable, dual Rosenthal and dual Radon-Nikodym
operator, is a mixed operator of type X ◦Rdual ◦Q.

4.3. The relationships BS ⊂ ABS ⊂ BSR, strict inclusions, are well known.
The following theorem gives relationships much more precise that will be used
in the next sections:

Theorem 4.4. i)BS = W ◦ BSR, ii)BS = W ◦ ABS and iii)ABS = R ◦ BSR
(the products must be in this order because BSR is not surjective).
Proof. i) for W ◦ BSR ⊂ BS use the Eberlein-Smulian characterization of
weakly compact operators; for BS ⊂ W ◦ BSR, use that BS ⊂ W, (see [2],
Lemma 1, page 49). Item ii) follows at once from i). Item iii) is exactly
the reformulation for operator ideals of the well known fact that for Banach
spaces without copies of `1, ABS and BSR properties, are equivalent, (see [1],
Section II, Prop. 3); the proof of iii) is the same given there, with the obvious
modifications./

Now, the objective will be interpolate and factorize mixed operators.

5. Interpolation of Operators.

Interpolation theory is concerned with the following: let A and B be interpo-
lation pairs and T : A→ B an interpolation operator; if the extreme operators
Ti : Ai → Bi (i = 0, 1), or some of them, belong to a class I of operators, what
can be expected from the interpolated Tθ,p? (see [14]).

If T : A → B is an interpolation operator, denote by TJS the induced
operator from J (A) into S(B).

Definition 5.1. An operator ideal I, possesses the Strong Property of Interpo-
lation (SPI, in short), respect to the Real Method of interpolation, depending
on the parameters 0 < θ < 1 and 1 ≤ p < ∞, if the following holds: the
interpolated operator Tθ,p : Aθ,p → Bθ,p belongs to I if and only if TJS ∈ I.

Theorem 5.2. Any (closed), injective and surjective operator ideal, I, which
satisfies the

∑
p-condition, possess SPI, see [14].

Proof. Let A and B be interpolation pairs. In order to avoid a complicated
notation, write A for the intersection J (A) and B for the sum S(B). Define on
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A and B the following equivalent norms (equivalent to the norms of intersection
and sum spaces, respectively):

‖x‖m = 2−θmJ(2m, x) for x ∈ A and m ∈ Z,

‖y‖m = 2−θmK(2m, y) for y ∈ B and m ∈ Z.

Denote by Am the space (A, ‖ ‖m) and by Bm the space (B, ‖ ‖m). For
each (xm)m∈Z ∈ (

∑
m∈Z

Am)p , the sum
∑
m∈Z

xm converges (absolutely) in S(A).

Then, there is a surjection Q from (
∑
m∈Z

Am)p onto Aθ,p = Jθ,p(A):

Q(xm)m∈Z =
∑
m∈Z

xm (convergence in S(A)),

and an isomorphic embedding J from Bθ,p into (
∑
m∈Z

Bm)p defined by J(y) =

(. . . y, y, y, . . .).
Let T : A → B be an interpolation operator and assume that TJS ∈ I.

Denote by Ji the embedding of Ai into (
∑
m∈Z

Am)p and by Qj the projection of

(
∑
m∈S

Bm)p onto Bj . The operator QjJTQJi is just TJS . It is, then, an operator

of the class I and, since I satisfies the
∑
p-condition, the operator JTQ belongs

to I((
∑
m∈Z

Am)p, (
∑
m∈Z

Bm)p). Now, injectivity and surjectivity of I imply that

Tθ,p ∈ I(Aθ,p, Bθ,p). Converse is clear./

Theorem 5.3. The single ideals X,W,R,BSR,BS,ABS and Q satisfy the∑
p-condition for 1 < p <∞.

Proof. Let I be one of these ideals. Prove first that if (Xn)n∈N is a family
of Banach spaces such that each Xn possesses the space property defined by I

then (
∑
n∈N

Xn)p, 1 < p < ∞, also possesses this property. For BS and WBS,

this is a well known Theorem of J. R. Partington, see [12].
Let (En)n∈N and (Fn)n∈N be two families of Banach spaces, assume that T ∈

L((
∑
n∈N

En)p, (
∑
n∈N

Fn)p), 1 < p < ∞ and that QjTJi ∈ I(Ei, Fj) for every i, j;

try to prove that T ∈ I((
∑
n∈N

En)p, (
∑
n∈N

Fn)p) in two steps, for finite families

first and, after, the general case:
(i) Easy for X, including the case p = 1.
(ii) For W and R, use Eberlein-Smulian and Rosenthal Theorems. By a diag-
onal argument obtain, for all bounded sequence [(xkn)n∈N]k∈N from (

∑
n∈N

En)p,

7



a subsequence [(xki
n )n∈N]i∈N such that (T [(xki

n )n∈N])i∈N is weakly convergent or
weakly Cauchy, respectively, in (

∑
n∈N

Fn)p. Recall, for 1 < p <∞ : (
∑
n∈N

Fn)∗p =

(
∑
n∈N

F ∗n)p′ , with 1
p + 1

p′ = 1.

(iii) For BSR ( and BS), the proof is that given by Heinrich in [8]. Use the fol-
lowing fact for the verification of the

∑
p-condition: the ideal I satisfies the

∑
p-

condition if the following holds for arbitrary Banach spaces E,F and Gn, (n =
1, 2, . . .): U ∈ L(E, (

∑
n∈N Gn)p), V ∈ L((

∑
n∈N Gn)p), F ) and V JnQnU =

V PnU ∈ I(E,F ) for all n, implies V U ∈ I(E,F ).
Take a weakly null sequence (xn) from E (respectively, a bounded sequence),

use the Erdös-Magidor result on regular methods of summability (see [6]), a
diagonal argument, and reason with Heinrich to conclude that there exists a
subsequence (x′n) which is Cesàro convergent, see [8], p. 407.
(iv) For BS and ABS, use Theorem 4.4., recall that if each ideal satisfy the∑
p-condition, the product also satisfies it and, finally, apply (ii) and (iii).

(v) For Q, see [8], p. 408.
Excepting the case of X, the assumption that 1 < p < ∞ is, clearly, neces-

sary./
Limited operators do not satisfy the

∑
p-condition for any p; they are like

compact: according to the Josefson-Nissenzweig Theorem (see [4]), if the unit
ball of a Banach space is a limited set, the space is finite dimensional.

Now is clear the next theorem. Except for ABS, this result was obtained in
[14]:

Theorem 5.4. The single ideals X,W,R,BS,ABS,Q, dual ideals Xdual,Rdual,
BSdual,ABSdual,Qdual and chains as I = R ◦ Rdual, I = X ◦W, I = (X ◦
ABS)dual or I = X ◦Rdual ◦Q, all possess the SPI.
proof. They are injective, surjective and satisfy

∑
p-condition for 1 < p < ∞

(satisfying
∑
p-condition they are closed)./

Be clear, the chain I = X ◦ Rdual ◦ Q, for example, possesses SPI, means
that the interpolated Tθ,p : Aθ,p → Bθ,p is, at the same time, a separable,
dual Rosenthal and decomposing operator if and only if the induced TJS is,
at the same time, a separable, dual Rosenthal and decomposing operator.

For ABS, it follows from Theorem 5.4., that result obtained by A. Kryczka,
in [9], Corollary 4.2..

6. Factorization of Operators. The operator ideal I possesses the fac-
torization property if for every operator T ∈ I there exists a Banach space
X ∈ Space(I) and operators U ∈ L(E,X), V ∈ L(X,F ) such that T = V U .

Several very important operator ideals have the factorization property, e.g.,
W,R,BS,ABS and Q. The fact that W possesses the factorization property is,
of course, the well known and celebrated factorization Theorem of Davis, Figiel,
Johnson and Pe lczyński in [5]. For R,BS and ABS, it is a result of Beauzamy
(see [1] and [2]) and for Q, it is due to Heinrich (see [8]).
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Other, also important ideals, have not the factorization property. For exam-
ple, neither Radon-Nikodym, Y, nor unconditionally summing, U, possess this
property as was proved by Ghoussoub and Johnson in [7]. Limited operators
do not possess the factorization property.

The following Lemma is of Beauzamy, [2]:

Lemma 6.1. Every surjective operator ideal with the SPI for the Lions-Peetre
method for pairs (depending on 0 < θ < 1 and 1 < p < ∞) possesses the
factorization property.
proof. Let T ∈ L(E,F ) and denote by G the space Im(T ) with the norm
obtained from the Minkowski functional of the convex, symmetric and absorbent
set T (BE). This G is a Banach space isometrically isomorphic to the quotient
space E/KerT and is imbedded into F . By the surjectivity of the ideal, this
imbedding i : G → F belongs to I. Since I has the SPI, the space (G,F )θ,p
with 0 < θ < 1 and 1 < p < ∞ belongs to Space(I) and T factors through
(G,F )θ,p. Indeed, let T be the operator T : E → G; if u is the imbedding
of G into (G,F )θ,p and j that of (G,F )θ,p into F , one has that T factors by
uT : E → (G,F )θ,p and j : (G,F )θ,p → F . Take, for example, (G,F ) 1

2 ,2
as the

factorization space./
This Lemma with Theorem 5.4 prove the following theorem:

Theorem 6.2. The single ideals W,R,BS,ABS,Q, dual ideals Xdual,Rdual,
BSdual,ABSdual,Qdual and chains as I = R ◦ Rdual, I = X ◦W, I = (X ◦
ABS)dual or I = X ◦Rdual ◦Q, are, all them, injective, surjective and possess
the SPI, therefore, they possess the factorization property.

Remark 6.3. The ideal of limited operators does not possess SPI. In fact,
being a surjective operator ideal, SPI would imply factorization property.

A few words about chains and factorization. An ideal such as Rdual, for
example, possesses the factorization property, means, of course, that if T ∈
Rdual(E,F ) then T factors through a Banach space S, whose dual, S∗, has
no isomorphic copy of `1. The chain I = X ◦W possesses the factorization
property, means that if T ∈ X◦W(E,F ) then T factors through a Banach space
S ∈ space(X◦W), that is, a Banach space which, at the same time, is separable
and reflexive. The chain I = (X ◦ABS)dual possesses the factorization property
means that if T ∈ (X ◦ ABS)dual(E,F ) then T factors through a Banach space
S ∈ space((X ◦ABS)dual), that is, a space whose dual, S∗, is, at the same time,
separable and possesses the alternate sign Banach-Saks property. Likewise for
T ∈ X ◦Rdual ◦Q(E,F ).

The fact that I = X ◦W possesses the factorization property is a result of
W. B. Johnson obtained even before than DFJP, [5].
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