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Abstract

Many ideals of operators (single ideals and chains) possess the strong
property of interpolation for the J and K methods of Lions-Peetre, Sparr,
Fernández and Cobos-Peetre. That is, let I be one of the ideals considered
here, let A and B be interpolation tuples and T : A → B a bounded
linear operator, then, the interpolated operator TJ,K : J(A) → K(B)
belongs to I if and only if the induced operator TJS from the intersection
J (A) into the sum S(B) belongs to I.
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1. Introduction. Let I be an operator ideal, let A and B be finite inter-
polation tuples, let J(A) and K(B) be the spaces obtained from A and B by
the J and K methods of interpolation. The ideal I possesses the Interpolation
Property for a method F of interpolation (see [4], chap. 2), if the interpolated
operator TF : F(A) → F(B) belongs to I when all (or some) of the extreme
operators Ti : Ai → Bi (i = 0, 1, ..., n), belong to I. The ideal possesses the
Strong Property of Interpolation, SPI in short, respect to the J and K methods
for families if the interpolated operator TJ,K : J(A)→ K(B) belongs to I when
the induced TJS : J (A) → S(B) from the intersection into the sum spaces is
in I.

The ideals of separable, Rosenthal, weakly compact, Banach-Saks, alternate
signs Banach-Saks, decomposing, their dual ideals and chains of them, possess
the strong property of interpolation respect to the J and K methods, for finite
families, of Lions-Peetre, Sparr, Fernández and Cobos-Peetre.

The paper is firstly concerned with the work of M. J. Carro, ([5], [6], [7], [8])
and that of S. Heinrich, [14]. The roots (of the paper) go back to the famous
and celebrated paper of Davis, Figiel, Johnson and Pe lczyński, [11].
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The main result is achieved in §5, theorem 5.4, after a necessary preamble.
This result applys better when J and K methods are equivalent, as in the case
of Lions-Peetre method for pairs and as in the many cases of Fernández and
Sparr methods when this happens (see [13] and [22]).

Notation is standard; in any case, unexplained symbols, terms, concepts,
etc., will be found in [4], [5], [14], [20] or [21].

2. Preliminaries. L(E,F ) is the space of all bounded linear operators. An
operator ideal I is a class of bounded linear operators, such that the components
I(E,F ) = I

⋂
L(E,F ) satisfy the following conditions:(i) I(E,F ) is a linear

subspace of L(E,F ), (ii) I(E,F ) contains the finite rank operators and (iii) if
R ∈ L(X,E), S ∈ I(E,F ) and T ∈ L(F, Y ) then, TSR ∈ I(X,Y ) (see [14] and
[20]).

The operator ideal is injective if for every isomorphic embedding J ∈ L(F, Y )
one has that T ∈ L(E,F ) and JT ∈ I(E, Y ) implies T ∈ I(E,F ); it is surjective
if for every surjection Q ∈ L(X,E) one has that T ∈ L(E,F ) and TQ ∈ I(X,F )
implies T ∈ I(E,F ). The ideal is closed if the components I(E,F ) are closed
subspaces of L(E,F ) (see [14] and [20], chap. 4).

Every operator ideal I defines a class of Banach spaces, Space(I), in the
following way: E ∈ Space(I) if and only if 1E ∈ I(E,E).

Let S be a countable set and (Xα)α∈S a family of Banach spaces; denote by

(
∑
α∈S

Xα)p , with 1 ≤ p <∞, the space of all the maps (xα)α∈S , such that xα ∈

Xα and ‖(xα)α∈S‖ = (
∑
α∈S
‖xα‖pXα)1/p <∞.

Denote by Ji the natural embedding of Xi into (
∑
α∈S

Xα)p and by Qj the

projection of (
∑
α∈S

Xα)p onto Xj .

Definition 2.1. The ideal I satisfies the
∑
p-condition for 1 ≤ p <∞ (see [14]),

if for any two families (Eα)α∈S and (Fα)α∈S of Banach spaces the following

holds: if T ∈ L((
∑
α∈S

Eα)p, (
∑
α∈S

Fα)p) and QjTJi ∈ I(Ei, Fj) for every i, j ∈ S,

then, T ∈ I((
∑
α∈S

Eα)p, (
∑
α∈S

Fα)p).

3. Real Methods of Interpolation for finite Families. Three real methods
of interpolation for finite families generalize the Lions-Peetre method for pairs.
They are, in chronological order: the Sparr method (see [22]), the Fernández
method for 2d spaces (see [13]) and the Cobos-Peetre method associated with the
vertices of a convex polygon in R2 (see [9]). In all of them, both, the K and J
functionals are defined introducing a positive weight factor ω (tuple of positive,
> 0, real numbers) in the norms of the sum and intersection spaces, being ω
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chosen in a different way for each one.

3.1. M. Carro in [5] and [6], proposed a method of real interpolation for infinite
families that, beside the fact of being the natural setting to compare with the
complex method for families, proposed by the St. Louis group in [10], provides
a unified approach to those methods for finite families. (For a comparison with
other real methods for infinite families, see [8]).

In order to briefly describe her method, let D denote the unit disk, D =
{z ∈ C : |z| < 1} and Γ its boundary. The family A = {A(γ) : γ ∈ Γ;A,U} is a
complex interpolation family (i.f.) on Γ with U as the containing space and A
as the log-intersection space if:

(a) for each γ, the complex Banach spaces A(γ) are continuously embedded
in U ; ‖ · ‖γ is the norm on A(γ) and ‖ · ‖U that on U ,

(b) for every a ∈
⋂
γ∈Γ

A(γ) the application γ → ‖a‖γ is a measurable function

on Γ,
(c) If A is the log-intersection linear space:

A = {a ∈ A(γ) for a.e. γ ∈ Γ :

∫
Γ

log+ ‖a‖γdγ <∞}

with log+ = max(log, 0), then, there exists a measurable function P on Γ such
that ∫

Γ

log+ P (γ)dγ <∞ and ‖a‖U ≤ P (γ)‖a‖γ for a.e. γ, (a ∈ A).

Let L be the multiplicative group, defined by:

L = {α : Γ→ R+;α is measurable with logα ∈ L1(Γ)}

and G be the space of all A-valued, simple and measurable functions on Γ.
The space G is that of all Bochner integrable (in U) functions a(·) such that
a(γ) ∈ A(γ) for a.e. γ ∈ Γ and that a(·) can be a.e. approximated in the A(γ)-
norm by a sequence of functions from G.

For α ∈ L and a ∈ U , with a =
∫

Γ
a(γ)dγ, define the K-functional with

respect to the i.f. A by:

K(α, a) = inf{
∫

Γ

α(γ)‖a(γ)‖γdγ},

where the infimum is taken over all representations a =
∫

Γ
a(γ)dγ (convergence

in U), with a(·) ∈ G. And, for a ∈ A define the J-functional by

J(α, a) = ess supγ∈Γ(α(γ)‖a‖γ).

For α ∈ L and z ∈ D, define
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α(z) = exp(

∫
Γ

logα(γ)Pz(γ)dγ),

where Pz is the Poisson kernel at z ∈ D, see [5].

Let A be an i.f., S ⊂ L a multiplicative subgroup and 1 ≤ p ≤ ∞. Follow-
ing Carro’s notation, (see, nevertheless, [8], Remark 1.1), define the K-space,
[A]Sz0,p, as that of all a ∈ U for which(

K(α, a)

α(z0)

)
α∈S
∈ `p(S),

endowed with the norm

‖a‖[A]Sz0,p
=

(∑
α∈S

(
K(α, a)

α(z0)

)p) 1
p

;

as always for p =∞.
The J-space, (A)Sz0,p , is defined as that of all a ∈ U for which there exists

a map, (u(α))α∈S , from S into A, so that a =
∑
α∈S

u(α) (convergence in the U

norm) and

(∗)
(
J(α, u(α))

α(z0)

)
α∈S
∈ `p(S),

endowed with the norm

‖a‖(A)Sz0,p
= inf

(∑
α∈S

(
J(α, u(α))

α(z0)

)p) 1
p

,

where the infimum extends over all representations of a.
In order to have that they are Banach intermediate spaces and the embed-

ding of (A)Sz0,p into [A]Sz0,p, some natural conditions are necessary on S. These
conditions are (see [5] and [6], §2, page 56):

(i)For every α ∈ S there exists a constant Cα such that P (γ) ≤ Cαα(γ), a.e. γ
(see the definition of i.f.).
(ii)For every z0 ∈ D, there exists a compact K ⊂ D such that∑

α∈S

infz∈K α(z)

α(z0)
<∞

.
(iii) S is a multiplicative group.
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Under these conditions, (∗) implies the absolute convergence of
∑
α∈S

u(α) in U

(see [5], §4, Proposition 4.3 and Remark 4.4).

Let A = {A(γ) : γ ∈ Γ;A,U} and B = {B(γ) : γ ∈ Γ;B,V} be two i.f.; let
T : A → B be an interpolation operator, i.e., T : U → V is a bounded linear
operator and Tγ : A(γ) → B(γ) bounded for each γ with ‖Tγ‖A(γ)→B(γ) ≤
M(γ) ∈ L. If ‖M‖∞ <∞, then, for every S ⊂ L:

TSz0,p : [A]Sz0,p → [B]Sz0,p and TSz0,p : (A)Sz0,p → (B)Sz0,p

are bounded with norms ≤ ‖M‖∞.
In view that (B)Sz0,p is embedded into [B]Sz0,p, the interpolated operator TSz0,p :

(A)Sz0,p → [B]Sz0,p is also bounded.

3.2. Now, consider finite families of spaces Ai, continuously embedded into
the same Hausdorff topological vector space H. As in [2], denote by J (A) the
intersection

⋂
Ai and by S(A) the sum A0 +A1 + . . .+An, with the norms

‖a‖J (A) = max{‖a‖A0
, ‖a‖A1

, . . . , ‖a‖An}
and

‖a‖S(A) = inf{‖a0‖A0 + ‖a1‖A1 + . . .+ ‖an‖An},
where the infimum extends over all representations of a = a0 + a1 + . . .+ an.
Suppose that J (A) is dense in every Ai (see [5], §3, Proposition 3.7; [6], §2,
Proposition 2.6), and do A = J (A),U = S(A):

(i) Let A = (A0, A1); take A(γ) = Ai for γ ∈ Γi, i=0,1, with {Γ0,Γ1} a parti-
tion of Γ. Do

S = {αm = 1Γ0 + 2m1Γ1 ;m ∈ Z},

to get that [A]Sz0,p = (A0, A1)|Γ1|z0 ,p = Kθ,p(A): the K-space of Lions-Peetre
with θ = |Γ1|z0 , where |E|z is the harmonic measure of E ⊂ Γ at z ∈ D, (see
[15]).

(ii) Let A = (A0, A1 . . . , An); take A(γ) = Ai for γ ∈ Γi, i = 0, 1, . . . , n and
{Γ0,Γ1, . . . ,Γn} a partition of Γ. Do

S = {αm = 1Γ0
+
∑
i=1,n

2mi1Γi ;m = (m1, . . . ,mn) ∈ Zn},

to get that [A]Sz0,p = (A0, A1 . . . , An)(|Γi|z0 ,i=1,...,n),p;K : the Sparr K-space, see
[22].

(iii) Let A = (A0, A1, A2, A3) be a family of 22 spaces; take A(γ) = Ai with γ ∈
Γi, i=0,1,2,3 and {Γ0,Γ1,Γ2,Γ3} a partition of Γ. Do
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S = {αm = 1Γ0
+ 2k1Γ1

+ 2l1Γ2
+ 2k2l1Γ3

;m = (k, l) ∈ Z2},

to obtain that [A]Sz0,p = (A0, A1, A2, A3)(θ1,θ2),p;K , where θ1 = |Γ1

⋃
Γ3|z0 ,

θ2 = |Γ2

⋃
Γ3|z0 : Fernández K-space, which can be generalized to families of 2d

spaces, see [13].

(iv) Let A = (A1, . . . , An); do

S = {α(k,l) =
∑
i=1,n

2kxi+lyi1Γi ; (k, l) ∈ Z2},

where (xi, yi) are the vertices of a convex polygon Π in the affine plane R2, to
obtain, for an interior point (α, β) of Π that [A]Sz0,p = A(α,β),p;K , with (α, β) =∑
i=1,n

|Γi|z0(xi, yi): Cobos-Peetre K-space, see [9].

With the same S in each case, apply the J-method just described to obtain
the J-spaces, (A)Sz0,p , of Lions-Peetre, Sparr, Fernández and Cobos-Peetre,

respectively. The density of J (A) in each Ai is not necessary for the J-method.
Despite the fact that J-space always embedds into K-space, J and K-

methods are not equivalent. Nevertheless, they are equivalent in the case of
Lions-Peetre method for pairs, see [4], and in many and very important cases
of Fernández and Sparr methods, see [13] and [22].

4. Some Classes of Operators.

4.1. An operator T ∈ L(E,F ) is compact if the image T (BE) of the unit ball
of E is relatively compact in the norm topology of F . The operator is weakly
compact if T (BE) is a relatively weakly compact set, or, using the Eberlein-
Smulian Theorem, if and only if every sequence (Txn) with xn ∈ BE admits
a weakly convergent subsequence. The operator T is separable if T (E) is a
separable subspace of F or, equivalently, if T (BE) is a separable subset of F .

T ∈ L(E,F ) is a Rosenthal operator if for each s ∈ L(`1, E) the composition
Ts is not an isomorphic embedding; T is unconditionally summing if for each
s ∈ L(c0, E) the composition Ts is not an isomorphic embedding. In other
words, T does not 8transport′ copies of `1 or c0, respectively. Using Rosenthal
and Bessaga-Pe lczyński theorems, it is easy to obtain the following characteri-
zation of these operators: T is Rosenthal if and only if every bounded sequence
(xn) of E possesses a subsequence (xnk) such that (Txnk) is weak Cauchy, that
is, if and only if T (BE) is weakly pre-compact. T is unconditionally summing
if and only if for every sequence (xn) of E which is unconditionally summable

(i.e., for every sequence (xn) such that
∑

n=1,∞
| f(xn) |< ∞ for all f ∈ E∗) the

sequence (Txn) is unconditionally summable in the norm topology of F , see
[17].
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T ∈ L(E,F ) has the Banach-Saks property if any bounded sequence (xn) of
E possesses a subsequence (x′n), such that (Tx′n) is Cesàro convergent, i.e., the

sequence of the averages n−1
∑
k=1,n

Tx′k, converges in F . The operator T has the

alternate-signs Banach-Saks property if any bounded sequence (xn) of E pos-
sesses a subsequence (x′n), such that ((−1)nTx′n) is Cesàro convergent, i.e., the

sequence of the averages n−1
∑
k=1,n

(−1)kTx′k converges in F . The operator T has

the Banach-Saks-Rosenthal property if any weakly null sequence (xn) of E pos-

sesses a subsequence (x′n), such that the sequence of the averages n−1
∑
k=1,n

Tx′k

converges in F . See [1] for a thorough study of these operators, and also see
[16].

Let (Ω, µ) be a probability space. An operator X ∈ L(L1(Ω, µ), E) is right-
decomposable if there exists a µ-measurable and E-valued kernel x(ω), with ω ∈
Ω, such that for all f ∈ L1(Ω, µ):

X(f) =

∫
Ω

f(ω)x(ω)dµ.

T ∈ L(E,F ) is a Radon-Nikodym operator if TX is right-decomposable for
every X ∈ (L1(Ω, µ), E).

An operator Z ∈ L(F, (L∞(Ω, µ)) is left-decomposable if there exists a µ-
measurable and F ∗-valued kernel z(ω), such that for all y ∈ F :

Zy(ω) = 〈y, z(ω)〉.

T ∈ L(E,F ) is a decomposing operator if ZT is left decomposable for every
Z ∈ L(F, (L∞(Ω, µ)); see [20], Chap. 24.

The following characterization of decomposing operators is well known, see
[20]: T is decomposing if and only if its dual, T ∗, is a Radon-Nikodym operator.

All the classes of operators defined above are ideals of operators in the sense
of Pietsch. As in [20], capital gothic letters will denote each one of them.
So: K will be the ideal of compact operators, W that of weakly compact, X
separable operators, R Rosenthal operators, U unconditionally summing, Y
Radon-Nikodym and Q that of decomposing operators; see [20] for a detailed
study of these ideals.

Place BS for Banach-Saks operator ideal, ABS for alternate-signs Banach-
Saks and BSR for Banach-Saks-Rosenthal operator ideal. These last ideals are
not treated by Pietsch; see [1] for their study.

All these ideals are closed and injective. Compact, weakly compact, separa-
ble, Rosenthal, Banach-Saks, alternate-signs Banach-Saks and decomposing are
also surjective operator ideals. Neither U nor Y nor BSR are surjective.

A bounded subset A of the space X is called limited if lim
n→∞

sup
x∈A
|x∗n(x)| = 0

for every weak∗-null sequence (x∗n) in X∗, i.e., lim
n→∞

x∗n(x) = 0 uniformly on A.

The operator T ∈ L(E,F ) is limited if T (BE) is a limited subset of F . Clearly,
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T is limited if and only if T ∗ : F ∗ → E∗ takes weak∗-null sequences to norm
null sequences. See [3] and [7] for a detailed study of these operators.

4.2. Let C and D be two operator ideals. The product D ◦ C is a new operator
ideal defined as follows: T ∈ L(E,F ) belongs to D ◦ C if there exists a Banach
space G and operators U ∈ C(E,G), V ∈ D(G,F ), such that T = V U .

Heinrich, in [14], Thm. 1.1, proves that if C and D are closed then D ◦ C is
also closed. It is always true that D ◦ C ⊂ D ∩ C, but the converse inclusion is
not valid in general. Nevertheless, see [14], Thm. 1.3, if C is injective and D is
surjective then D ◦ C = D ∩ C.

This product is, certainly, associative, non commutative in general, although,
if C and D are closed, injective and surjective operator ideals, the product com-
mutes. The identity element is, of course, L.

Also, is clear that if C is injective and D is surjective, both satisfying the∑
p-condition, 1 ≤ p <∞, then, D ◦ C = D ∩ C satisfies the

∑
p-condition.

Let I be an operator ideal. The operator T ∈ L(E,F ) belongs to the dual
ideal Idual if the adjoint operator T ∗ belongs to I(F ∗, E∗). For example, the
fact that T is decomposing if and only if its dual, T ∗, is a Radon-Nikodym
operator, means that Q = Ydual.

If I is injective, Idual is surjective and if I is surjective, Idual is injective (see
[20], chap. 4). If I is closed, so is Idual. If I satisfies the

∑
p-condition, for all

p with 1 < p <∞, then Idual satisfies
∑
p-condition for all p with 1 < p <∞.

Some times happens that, depending on the relationship between the ideals,
the product reduces, as for example, the product W◦BS◦R which is equal to R,
or, as in the case of weakly compact operators, for which Wdual = W, etc., (see
[20]).

The product of several operator ideals will be called a chain. For example,
I = R ◦Rdual, I = X ◦W, I = (Q ◦ ABS)dual or I = X ◦Rdual ◦Q, all them
being, certainly, injective, surjective and closed operator ideals, are chains.

Let E and F be Banach spaces. An operator T ∈ chain(E,F ) is a mixed
operator. For example, T ∈ X◦Rdual◦Q(E,F ), which means that T : E → F is,
at the same time, a separable, Rosenthal and dual Radon-Nikodym operator,
is a mixed operator of type X ◦Rdual ◦Q.

4.3. The relationships BS ⊂ ABS ⊂ WBS, strict inclusions, are well known.
The following theorem gives relationships much more precise that will be used
in the next sections:

Theorem 4.4. i)BS = W ◦ BSR, ii)BS = W ◦ ABS and iii)ABS = R ◦ BSR
(the products must be in this order because BSR is not surjective).
Proof. i) for W ◦ BSR ⊂ BS use the Eberlein-Smulian characterization of
weakly compact operators; for BS ⊂ W ◦ BSR, use that BS ⊂ W, (see [2],
Lemma 1, page 49). Item ii) follows at once from i). Item iii) is exactly
the reformulation for operator ideals of the well known fact that for Banach
spaces without copies of `1, ABS and BSR properties, are equivalent, (see [1],
Section II, Prop. 3); the proof of iii) is the same given there, with the obvious
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modifications./
Now, the objective will be interpolate mixed operators.

5. Interpolation of Operators. Interpolation theory is concerned with the
following: let A and B be interpolation tuples and T : A→ B an interpolation
operator, if the extreme operators Ti : Ai → Bi (i = 0, 1, ..., n), or some of them,
belong to a class I of operators, what can be expected from the interpolated
TSz0,p? (see [21]).

If T : A → B is an interpolation operator, denote by TJS the induced
operator from J (A) into S(B).

Definition 5.1. An operator ideal I, possesses the Strong Property of Inter-
polation (SPI, in short), respect to the Carro’s Method, i.e., the real method
for families depending on the parameters z0 ∈ D, 1 ≤ p <∞ and S ⊂ L, if the
following holds: the interpolated operator TSz0,p : (A)Sz0,p → [B]Sz0,p belongs to
I if and only if TJS ∈ I.

Theorem 5.2. Any (closed), injective and surjective operator ideal, I, which
satisfies the

∑
p-condition, possess SPI, see [21].

Proof. Let A and B be an i.f. of finite tuples. In order to avoid a complicated
notation, write A for the intersection J (A) and B for the sum S(B). Define on
A and B the following equivalent norms (equivalent to the norms of intersection
and sum spaces, respectively):

‖x‖α =
J(α, x)

α(z0)
for x ∈ A and α ∈ S,

‖y‖α =
K(α, y)

α(z0)
for y ∈ B and α ∈ S,

where S is the corresponding multiplicative subgroup of L for each method
described in §3.2.

Denote by Aα the space (A, ‖ ‖α) and by Bα the space (B, ‖ ‖α). For each

(xα)α∈S ∈ (
∑
α∈S

Aα)p , the sum
∑
α∈S

xα converges (absolutely) in S(A). Then,

there is a surjection Q from (
∑
α∈S

Aα)p onto the J-space (A)Sz0,p:

Q(xα)α∈S =
∑
α∈S

xα (convergence in S(A))

and an isomorphic embedding J from the K-space [B]Sz0,p into (
∑
α∈S

Bα)p defined

by J(y) = (yα)α∈S such that yα = y for all α.
Let T : A → B be an interpolation operator and assume that TJS ∈ I,

denote by Ji the embedding of Ai into (
∑
α∈S

Aα)p and by Qj the projection of
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(
∑
α∈S

Bα)p onto Bj . The operator QjJTQJi is just TJS . It is, then, an operator

of the class I and, since I satisfies the
∑
p-condition, the operator JTQ belongs

to I((
∑
α∈S

Aα)p, (
∑
α∈S

Bα)p). Now, injectivity and surjectivity of I imply that

TSz0,p ∈ I((A)Sz0,p, [B]Sz0,p). Converse is clear./

Theorem 5.3. The single ideals X,W,R,BSR,BS,ABS and Q satisfy the∑
p-condition for 1 < p <∞.

Proof. Let I be one of these ideals. First, prove that if (Xn)n∈N is a family
of Banach spaces such that each Xn possesses the space property defined by I

then (
∑
n∈N

Xn)p, 1 < p <∞, also possesses this property. For BS and BSR, this

is a well known Theorem of J. R. Partington, see [19].
Let (En)n∈N and (Fn)n∈N be two families of Banach spaces, assume that T ∈

L((
∑
n∈N

En)p, (
∑
n∈N

Fn)p), 1 < p < ∞ and that QjTJi ∈ I(Ei, Fj) for every i, j;

try to prove that T ∈ I((
∑
n∈N

En)p, (
∑
n∈N

Fn)p) in two steps, for finite families

first and, after, the general case:
(i) Easy for X, including the case p = 1.
(ii) For W and R, use Eberlein-Smulian and Rosenthal Theorems. By a diag-

onal argument obtain, for all bounded sequence [(xkn)n∈N]k∈N from (
∑
n∈N

En)p,

a subsequence [(xkin )n∈N]i∈N such that (T [(xkin )n∈N])i∈N is weakly convergent or

weakly Cauchy, respectively, in (
∑
n∈N

Fn)p. Recall, for 1 < p <∞ : (
∑
n∈N

Fn)∗p =

(
∑
n∈N

F ∗n)p′ , with 1
p + 1

p′ = 1.

(iii) For BSR ( and BS), the proof is that given by Heinrich in [14]. Use
the following fact for the verification of the

∑
p-condition: the ideal I satis-

fies the
∑
p-condition if the following holds for arbitrary Banach spaces E,F

and Gn, (n = 1, 2, . . .): U ∈ L(E, (
∑
n∈NGn)p), V ∈ L((

∑
n∈NGn)p), F ) and

V JnQnU = V PnU ∈ I(E,F ) for all n, implies V U ∈ I(E,F ).
Take a weakly null sequence (xn) from E (respectively, a bounded sequence),

use the Erdös-Magidor result on regular methods of summability (see [12]), a
diagonal argument, and reason with Heinrich to conclude that there exists a
subsequence (x′n) which is Cesàro convergent, see [14], p. 407.
(iv) For BS and ABS, use Theorem 4.4., recall that if each ideal satisfy the∑
p-condition, the product also satisfies it and, finally, apply (ii) and (iii).

(v) For Q, see [14], p. 408.
Excepting the case of X, the assumption that 1 < p < ∞ is, clearly, neces-

sary./
It is clear that all the chains proposed as examples in §4.2., satisfy

∑
p-

condition with 1 < p <∞.

10



Limited operators do not satisfy the
∑
p-condition for any p; they are like

compact: according to the Josefson-Nissenzweig Theorem (see [3]), if the unit
ball of a Banach space is a limited set, the space is finite dimensional.

Now is clear the next theorem. Except for ABS, this result was obtained in
[21] for the special case of the Lions-Peetre method for pairs:

Theorem 5.4. The single ideals X,W,R,BS,ABS,Q, dual ideals Xdual,Rdual,
BSdual,ABSdual,Qdual and chains as I = R ◦ Rdual, I = X ◦W, I = (X ◦
ABS)dual or I = X ◦Rdual ◦Q, all possess the SPI.
proof. They are injective, surjective and satisfy

∑
p-condition for 1 < p < ∞

(satisfying
∑
p-condition they are closed)./

Be clear, the ideal Rdual, for example, possesses SPI means that the inter-
polated operator, TSz0,p : (A)Sz0,p → [B]Sz0,p, belongs to Rdual, (that is, its adjoint

is a Rosenthal operator), if and only if the induced TJS belongs to Rdual; the
chain I = X ◦ Rdual ◦ Q, for example, possesses SPI, means that the interpo-
lated operator TSz0,p : (A)Sz0,p → [B]Sz0,p is, at the same time, a separable, dual
Rosenthal and decomposing operator if and only if the induced TJS is, at the
same time, a separable, dual Rosenthal and decomposing operator.

See [7], for a thorough study of SPI for weakly compact operators between
infinite families (in general, Thm. 5.1.1), finite families (in particular) and for
interpolation of limited operators.

In the case of ABS, Theorem 5.4. generalizes that result obtained by A.
Kryczka, in [16], Corollary 4.2..

As was said before, the results of this section apply better in the cases where
J and K methods for families are equivalent, see [13] and [22].
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