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Preliminaries

This manuscript provides an elementary introduction to a new wave the-

ory called Realism, which is di�erent from Quantum Mechanics. Realism

is a classical wave theory with states, a deterministic and continuous evolu-

tion equation and observables which are continuous functions of state. The

evolution is non-linear and is endowed with sensitive dependency on initial

conditions. The non-linearity of Realism is intrinsic and originates in the

non-linear nature of the space of states. This is not the kind of non-linearity

that refers to states in a linear space evolving according to a non-linear ex-

pression that involves the state and its derivatives.

Previous study of, and adherence to, Quantum Mechanics creates preconcep-

tions that becloud the natural and simple physical ideas underlying Realism.

Readers already compromised with Quantism are invited to set aside their

well intentioned acceptance of that theory, at least for the moment, and at-

tempt to assimilate the new perspective on microphysics provided here. They

will be able to verify that there is no use for the Uncertainty Principle, Wave-

Particle Duality, Probabilistic Interpretation of Waves, Probabilistic Quan-

tum Jumps, Occult Variables and similar constructs of Quantism, while the

eigenvalue and eigenfunction calculations are retained and play the expected

crucial role.

It is assumed that the reader is familiar with calculus, linear algebra, elemen-

tary linear di�erential equations and their most rudimentary applications in

the context of Hamiltonian operators, eigenvalues, eigenfunctions and evolu-

tion equations. The exposition is organized as follows.

The three general principles of Realism are are stated and their use is exem-
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pli�ed with a discussion of a 2-level system. The principles are the de�nitions

of space of states, energy observable and evolution equation. Consequences

of the postulates, still for the 2-level case, are explained. A rather plausible

physical hypothesis, the Photon Hypothesis, is stated in section 14. It simply

says that the radiated energy travels with �xed direction and with constant

speed c. Together with the principles of Realism, the Photon Hypothesis

provides a partial resolution of the photon structure.

Sensitive dependency on initial conditions, sometimes called chaos, appears

in three level systems, a case not discussed here but explained in papers

available at the URL mentioned below. This is perhaps the mildest form of

chaos a continuous system can present but provides the reason why a system

in an excited stationary state makes transitions to one of several possible sta-

tionary states with lower energy. In classical mechanics the throw of a coin

is in principle a totally deterministic phenomenon that can be better ap-

proached with a simple-minded probabilistic model. To predict the outcome

requires, besides the solution of a di�erential equation, a precise knowledge

of the initial state. A similar situation occurs in Realism, with a di�erence:

A single, isolated hydrogen atom is formally a much simpler system than a

macroscopic coin and therefore the relevant equation, Schr�odinger eigenvalue

equation, is easier to solve.

Risking to be tiresome, concision has been sacri�ced and we have relied on

a redundant and repetitive style with display of many formulas and �gures.

An alternative presentation of Realism can be found in

http://euler.ciens.ucv.ve/�dcrespin/Pub

A discussion of spin dynamics is contained in the paper Projective Spectral

Theorems and Deterministic Atoms.

Regardless of the generality of the presentation or the arguments given, the

Hamiltonian of the hydrogen atom, brilliantly proposed and analyzed by

Erwin Schr�odinger, but later misinterpreted by Quantists, is both the guiding

principle and the �nal goal of our analysis.

Sociological issues associated with scienti�c innovations are explained in The

Structure of Scienti�c Revolutions by Thomas Kuhn; if his arguments are

correct the eventual replacement of Quantism should occur against consider-

able initial resistance and presumably will only happen at the hands of the
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younger generation.

General Principles and Two level systems

1.- Hamiltonians and Wave Functions: A system is speci�ed by its

Hamiltonian. The Hamiltonian is a symmetric linear operator de�ned on

some collection of wave functions. These wave functions are real valued func-

tions of their arguments and have continuous derivatives. Wave functions can

be added together and multiplied by real scalars forming a vector space E over

the real scalars. Additionally, functions can be multiplied together and their

inner product is h ; �i = R
 �. Recall that h 1 +  2; �i = h 1; �i+ h 2; �i,

h� ; �i = �h ; �i = h ; ��i, h ; �i = h�;  i and h ;  i � 0.

The Hamiltonian transforms a given wave function  into a wave function

H( ). Symmetry of H means that hH( ); �i = h ;H(�)i and this im-

plies, for example, hH( ); H(�)i = hH2( ); �i = h ;H2(�)i. Here H2( ) =
H(H( )). An eigenfunction is a non zero wave function  i such thatH( i) =

��i  i for some (real) scalar ��i (the minus sign is conventional); this scalar

is an eigenvalue of H. One then says that the eigenfunction  i and the eigen-

value ��i belong to each other. The Kronecker symbol is Æij = 1 if i = j
and Æij = 0 otherwise. Beyond these properties, explicit formulas for the

eigenfunctions are not required. If the Hamiltonian has a complex valued

eigenfunction  k + {�k belonging to the eigenvalue ��k it can be assumed

that h k; �ki = 0 and then the real and imaginary parts,  k and �k, are real
valued eigenfunctions belonging to the eigenvalue ��k. In this way complex

valued eigenfunctions give rise to real valued ones.

Wave functions  of interest are linear combinations of eigenfunctions  =

a0 0 + � � � + an n; the real number ai is the ith-coeÆcient. Series, that

is, in�nite linear combinations
P
1

i=0 ai i, are usually needed to deal with

systems having in�nitely many levels.

Let a given system be speci�ed by a Hamiltonian H de�ned on a collection

E of wave functions. The HamiltonianH 0 is a subsystem of H if it is de�ned

in a subcollection E 0 of E and the following two properties hold: a) If wave

function  0 is in E 0 then H( 0) is also in E. b) H( 0) = H 0( 0). This is
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usually paraphrased saying that H 0 is the restriction of H to an invariant

subspace.

The number of levels of H is the number of di�erent eigenvalues. Therefore a

system can have 1, 2, 3, � � �, n or in�nitely many levels; in the in�nite case it

will be assumed that eigenvalues form a increasing sequence. Systems with

a continuum of eigenvalues can also be studied.

Eigenfunctions belonging to the eigenvalue ��i, together with the zero func-

tion, form a linear subspace of E, the eigenspace E(��i) of ��i. This means

that a linear combination of eigenfunctions belonging to an eigenvalue, and

in particular a multiple of an eigenfunction, is again an eigenfunction of the

same eigenvalue, or is zero. The dimension of E(��i), denoted m(��i), is
the multiplicity or degenerancy of ��i. The system is non-degenerated or

simple if all its eigenspaces are 1-dimensional, that is, if for all i one has

m(��i) = 1. Otherwise the system is degenerated. Systems discussed in the

present paper have 2 levels and are non-degenerated. For a technical discus-

sion that includes the degenerate case see the paper Stability of Dynamical

Systems and Quantum Mechanics at the URL mentioned above.

For non-degenerated systems a convenient way to de�ne a subsystem H 0 is

to indicate a collection of eigenvalues of H. Subsystems can then be speci�ed

by indicating a collection of (mutually orthogonal) eigenfunctions.

A 1-level system has a Hamiltonian with a unique eigenvalue ��0 and a

unique eigenfunction  0; all wave functions have the form � 0 for some

scalar � and H is a 1� 1 matrix with single element ��0.

For a 2-level bound system the Hamiltonian has the form

H =

" ��0 0

0 ��1

#
(1)

with eigenvalues��0 < ��1 < 0 and eigenfunctions  0;  1 satisfying h 0;  0i
= h 1;  1i = 1 and h 0;  1i = 0 or, equivalently, h i;  ji = Æij. In this 2-level

case wave functions have the form  = a0 0 + a1 1. As already indicated,

complex valued functions and complex coeÆcients are not needed and will

not be used. Wave functions of a 2-level system can be represented as points

in a plane with rectangular coordinates a0 and a1; see Figure 1.
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Examples of eigenvalues are ��0 = �13:64, ��1 = �3:41. Recall that the

ground state of the hydrogen atom has energy �13:6 electronvolts and the

�rst excited stationary state has energy �13:6=22 = �3:4 eV, with other

stationary energy values equal to �13:6=n2 eV. Examples of eigenfunctions

are eigenfunctions of the hydrogen atom belonging to the eigenvalues.

a
1

a
0

ψ

µψ

.

.

Figure 1. Each 2-level wave function corresponds to a point in

the plane. The line passing through wave functions  and � 

contains the origin.

A 2-level system has two 1-level subsystems. These have Hamiltonians given

by 1�1 matrices with unique element��0 or��1 and the corresponding wave
functions are real multiples of  0 or  1. This pair of subsystems correspond

with the pair of eigenspaces.

2.- States: Careful distinction has to be made between wave functions and

states. A non identically zero wave function  belongs to, and determines, a

state [ ]. The following de�nition of state is the �rst fundamental principle

of Realism. It provides a basic guideline for formulas and calculations.
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Definition of State: Proportional wave functions belong to

the same state

[ ] = [� ] for all � 6= 0 (2)

Conversely, if two wave functions belong to the same state then

they are proportional.

Thus, a state is a collection of non-zero, mutually proportional wave func-

tions; will refer to this de�nition as the Proportionality Principle. The factor

� is always a real number. All physically relevant notions de�ned for states

by means of wave functions should be independent of the proportionality

factor �.

Each eigenfunction  i determines a stationary state or eigenstate [ i]. It will

be seen that stationary states are in fact motionless: Under the evolution

equation to be postulated in section 8 they remain �xed in the space of

states.

As indicated in section 1, wave functions  in a 2-level system can be ex-

pressed as linear combinations with real coeÆcients  = a0 0+a1 1, with at

least one non-zero coeÆcient, or, equivalently, a20 + a21 6= 0. Therefore states

in a 2-level system have the form [ ] = [a0 0+a1 1] and the proportionality

principle says that

[a0 0 + a1 1] = [�a0 0 + �a1 1] for all � 6= 0 (3)

For example [2 0+3 1] = [�(2 0+3 1)] = [2
p
2 0+3

p
2 1] = [(2=3) 0+

 1]. Here � has been given the values �1, p2 and 1=3.

Since 2-level wave functions  correspond with points in a plane, states [ ]

correspond with lines through the origin in the same plane. More on this can

be found in section 3 below.

The pair of states [ 0], [ 1] determined by the eigenfunctions are, in the

case of 2-level systems, the only stationary states. The state [ 0] is the

ground state and [ 1] is the (unique) excited stationary state. A state is

complete if a0 6= 0 and a1 6= 0; for complete states [ ] = [a0 0 + a1 1] and
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[�] = [b0�0 + b1�1] their equality, [ ] = [�], is equivalent to the equality of

coeÆcient quotients: a0=a1 = b0=b1 or a1=a0 = b1=b0. This means that there

is only one degree of freedom in the space of states of a 2-level system. Note

that states in a 2-level system are either stationary or complete.

Note that the stationary states [ 0] and [ 1] are the unique states for the

1-level subsystems of H.

3.- Space of States: The collection of all states is the space of states.

Since wave functions form a real vector space E it follows that each state is

a line through the origin in this vector space. The collection of all these lines

is therefore identical with the space of states.

Semicircle S

ψ

.

.

State 

.

P

P'

Figure 2. Each line through the origin corresponds with a unique

point in the semicircle except for [ 1] that determines a pair of

points P , P 0.

Readers familiar with the concept will recognize this space of states as the

real projective space associated to E. From the viewpoint of the description
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of the physical process projective spaces automatically renormalize all states

without dividing by the norm of the state. For 2-level systems states corre-

spond with lines through the origin in the a0a1-plane. Each line determines

a unique point in the semicircle S, except for a redundancy, illustrated in

Figure 2, that arises from the fact that the vertical line determines a pair of

diametrically opposite points P , P 0, which are the end points of S. Therefore

if these two points are identi�ed to each other a closed curve equivalent to

a circle is obtained. The points of this circle correspond exactly with lines

that pass through the origin so that the actual space of states is a circle.

When obtained in this way the circle is known as the real projective line. See

Figure 3 below.

ψ

...

...

ψ1

0
ψ

Figure 3. Space of states of a 2-level system. Each point in this

circle uniquely corresponds with a line in the plane. Compare with

Figure 2.

As a consequence a function of state is just a function de�ned in the real

projective line. Also, a time dependent state is a collection of states pa-

rameterized by time t and therefore is the same than a parameterized curve
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contained in the real projective line. Conversely, points in the circle (which

are points in a real projective line) are the same than lines through the origin.

The pair of diametrically opposite points [ 0] and [ 1] are the coordinate axes

in the a0 a1plane. Functions de�ned on the circle are equivalent to functions

de�ned on non-zero vectors of the plane which are constant along lines pass-

ing through the origin (i.e. independent of the scalar factor �). And �nally,

a curve parameterized by time and contained in the circle is a collection of

lines contained in the plane and similarly parameterized by time.

4.- Coordinates: Consider the collection V0 of all 2-level states [ ] =

[a0 0 + a1 1] such that a0 6= 0; they are states with non-zero contribution

from the eigenfunction  0. All states except the stationary state [ 1] belong

to V0. The scalar valued function f0 with domain V0 and de�ned by the

expression

f0([a0 0 + a1 1]) = a1=a0 (4)

is the projective coordinate system centered at [ 0] in the space of 2-level

states. This coordinate system is a one-to-one correspondence between states

[ ] belonging to V0 and scalars. f0 transforms the stationary state [ 0] into
the scalar 0 and states (lines) close to [ 0] into scalars close to f0([ 0]) = 0.

The inverse of f0 is the function g0 from scalars to states de�ned by

g0(x) = [ 0 + x 1] (5)

The coordinate system can be described pictorially as follows. V0 consists

of all states excluding [ 1]. Let L0 be the line a0 = 1. The state [ ] =
[a0 0 + a1 1] intersects L0 at the point (1; a1=a0). Therefore f0([ ]) is the

(ordinate of the) intersection of [ ] and L0. See Figure 4. Note that the line

L0 is not a state (does not contains the origin). Instead L0 contains a unique

wave function  0 + (a1=a0) 1 for each state [a0 0 + a1 1] in V0. The inverse

g0 transforms x into the state g0(x) = [ 0 + x 1] =line through (1; x) and

the origin.
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Figure 4. Coordinates centered at  0. Each state [ ] = [a0 0 +
a1 1] with a0 6= 0 intersects line L0 at a point with ordinate

a1=a0 = f0([ ]).

Similarly, let V1 consist of all states [ ] = [a0 0 + a1 1] with a1 6= 0 and

de�ne the projective coordinate system f1 centered at [ 1] as

f1([a0 0 + a1 1]) = a0=a1 (6)

The function f1 is a one-to-one correspondence from V1 to scalars with inverse

g1(x) = [x 0 +  1]. f1 transforms the stationary state [ 1] into the scalar 0

and states near [ 1] into scalars near 0. If L1 is the line a1 = 1 then f1([ ]) is

the abscissa of the intersection of [ ] with L1. See Figure 5. Line L1 contains

for each state [ ] in V1 a unique wave function (a0=a1) 0 +  1.
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Figure 5. Coordinates centered at  1. Each state [ ] = [a0 0 +

a1 1] with a1 6= 0 intersects line L1 at a point with abscissa

a0=a1 = f1([ ]).

Projective coordinate systems are partially de�ned functions of state. f0 is

de�ned in all the space of states except at [ 1] and similarly f1 is de�ned

except at [ 0]. Complete states belong to both domains V0 and V1 and

they have well de�ned images by both f0 and f1. Note also that projective

coordinates are de�ned by means of intersections of states with lines L0

and L1, while the correspondence of states with points in the projective line

de�ned in section 3 was obtained intersecting states with a semicircle.

5.- Approximating stationary states: The notion of nearness to a

stationary state is related to the projective coordinate systems. The 2-level

state [ ] = [a0 0 + a1 1] in V0 (that is, with a0 6= 0) is near the stationary

state [ 0], denoted [ ] � [ 0], if a1=a0 is near 0. In other words, [ ] is

near [ 0] if a0 6= 0 and the projective coordinate system centered at [ 0]

transforms [ ] in a scalar close to 0. See Figure 4. This can be abbreviated

as follows: [ ] � [ 0] if f0([ ]) � f0([ 0]) = 0. In a similar way, state [ ] is
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near the stationary state [ 1] if a1 6= 0 and f1([ ]) = a0=a1 is near 0, or in
abbreviated form: [ 1] if f1([ ]) � f1([ 1]) = 0.

Similarly, if a1 6= 0 then [ ] = [(a0=a1) 0 +  1] and if ja0=a1j is a small

quantity then [ ] � [ 1]. See Figure 5.

The de�nition of nearness to a stationary state depends only on the quotient

of coordinates and therefore nearness depends on the state and not on the

particular wave function.

If ja1=a0j is small then its reciprocal ja0=a1j is large, and conversely. Therefore
no state can simultaneously approach both stationary states [ 0] and [ 1].

At the other extreme the state [ ] = [ 0 +  1] (a0 = a1 = 1) is away from

both stationary states.

6.- Energy: The second fundamental principle of realism is the de�nition

of energy in terms of the Hamiltonian operator and wave functions.

Energy of States: If the Hamiltonian operator is H then the

energy of state [ ] is given by

eH = eH([ ]) =
hH( );  i
h ;  i (7)

Replacing  with � gives the same energy, therefore eH is a well de�ned

function of state. With this second principle the natural de�nition of energy

as a scalar valued function of state has been recovered. The quantum me-

chanical de�nition of the energy observable as a self-adjoint operator, that

is, as a special type of wave function valued function of wave functions, is

too arti�cial.

In a two-level system states [ ] = [a0 0 + a1 1] have energy

eH =
hH(a0 0 + a1 1); a0 0 + a1 1i
ha0 0 + a1 1; a0 0 + a1 1i (8)

= � �0a
2
0 + �1a

2
1

a20 + a21
(9)
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which for complete states can also be expressed as

eH = � �0 + (a1=a0)
2�1

1 + (a1=a0)2
(10)

= � (a0=a1)
2�0 + �1

(a0=a1)2 + 1
(11)

Taking x = a1=a0 and x = a0=a1 the formulas for energy in local coordinates

are

eH(g0(x)) = � �0 + �1x
2

1 + x2
(12)

and

eH(g1(x)) = � �0x
2 + �1

1 + x2
(13)

See Figure 6.
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Figure 6. Energy in local coordinates. Graphs of (12) and (13)

are shown in (a) and (b) respectively.

It is immediate from the de�nitions that the energies of the stationary states

are eH [ 0] = ��0 and eH [ 1] = ��1, which are the minimum and maximum

of eH . Formulas (10) and (11) show that [ ] � [ 0] implies eH([ ]) � ��0,
and [ ] � [ 1] implies eH([ ]) � ��1. On the other hand for the state with

a0 = a1 = 1 the energy is the average value eH = �(1=2)(�0 + �1).



Crespin: An Introduction to Realism 15

...
ψ1

0
ψ
...

.

.

......

...

.

...

..

-3.41 eV

-13.64 eV

Figure 7. Graph of the energy as a function of state. Numerical

eigenvalues ��0 = �13:64 and ��1 = �3:41 correspond to en-

ergies of the ground state and �rst excited state of the hydrogen

atom.

The space of states for a 2-level system is a circle, thus the energy is a real

valued function of de�ned in this circle. The graph of this function is a curve

contained in a cylinder as shown in Figure 7.

7.- Evolution of Wave Functions: Let h =Planck constant and de�ne

� = 2=h. Energies and emission times typical for the hydrogen atom are

conveniently measured in electronvolts and femtoseconds. In these units

h = 4:13 eV�fs and � = 0:48 eV�1� fs�1. The constant � appears in the real

evolution equation.

Given a Hamiltonian operator H one can consider ��H and the time depen-

dent exponential e��Ht which are also operators and can be applied to wave
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functions in formulas like ��H( ) and particularly in the following expres-

sion that de�nes, for a given initial wave function  , its time evolution:

 (t) = e��Ht( ) (14)

The evolution of wave functions satis�es the time shift relation ( (s))(t) =

 (s+t). A calculation shows that the time derivative of  (t) is

d (t)

dt
= _ (t) = ��He��Ht( ) = ��H( (t)) (15)

From the way exponential operators are de�ned it can be proved that if ��i
is an eigenvalue of H belonging to the eigenfunction  i then e��Ht( i) =

e��it( i) and therefore e��it is an eigenvalue of e�Ht belonging to the same

eigenfunction  i.

In 2-level systems the Hamiltonian H is a diagonal matrix with respect to

the basis  0,  1 implying

��H =

"
��0 0

0 ��1

#
(16)

and

e��Ht =

"
e��0t 0

0 e��1t

#
(17)

with respect to the same basis. This exponential matrix can be applied to

any wave function  = a0 0 + a1 1 resulting in

 (t) = a0e
��0t 0 + a1e

��1t 1 (18)

The time derivative of the wave function is

_ (t) = �(a0�0e
��0t 0 + a1�1e

��1t 1) (19)

From this it follows that if wave functions are represented as points in a plane

having rectangular coordinates a0 and a1 then the trajectories correspond to

solutions of the linear system ( _a0; _a1) = (��0 a0; ��1 a1). See Figure 8. For

t large negative the state  (t) is a point close to the origin; however, since

��0t < ��1t the state [ 
(t)] is close to the vertical axis, that is, close to the
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stationary state  1. At time t = 0 one obtains the initial state  (0). For t
large positive,  (t) diverges towards in�nity, but since ��0t > ��1t the state

[ (t)] is close to the horizontal axis, that is, close to the stationary state  0.

See Figure 8 below.

........

.........

ψ

..

....... ............

ψ1

0
ψ

..

............

ψ

.......

Figure 8. Trajectories of wave function evolution. A initial point

 in the plane moves as  (t) along solutions of a linear di�erential

equation and determines a moving line [ (t)] that pivots around

the origin.

8.- Evolution of States: The careful distinction between wave functions

and states implies a not less relevant distinction between evolution of waves

and evolution of states. The third basic principle of Realism is the evolution

law that speci�es in terms the Hamiltonian operator and wave functions the

manner in which states move.

Evolution Equation: If at time 0 the state of a system is [ ]
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then the state at time t is

[ ](t) = [ (t)] = [e��Ht( )] (20)

It must be emphasized that it is the evolution of states, and not the evolution

of wave functions, the one that describes the physical process. For example,

an eigenfunction  i becomes, after time t, equal to the wave function e��it  i

therefore e��it( i) 6=  i except at t = 0. Clearly then, eigenfunctions do

change under the evolution. On the contrary, for the stationary state [ i] one

has [ i]
(t) = [e��it( i)] = [ i]; the last equality follows from the Proportion-

ality Principle. Therefore stationary states (corresponding to eigenfunctions)

remain �xed during evolution. They are truly motionless states that do not

change in time.

The time shift relation for evolution of states is ([ ](s))(t) = [ ](s+t); this

is useful to reduce the study of 2-level trajectories with arbitrary complete

initial state to the cases a0 = a1 = 1 and a0 = �a1 = 1.

The evolution of states in a 2-level system is

[ ](t) = [a0e
��0t 0 + a1e

��1t 1] (21)

which according to the Proportionality Principle is equivalent to

[ ](t) = [ 0 + (a1=a0)e
�(�1��0)t 1] (22)

and to

[ ](t) = [(a0=a1)e
�(�0��1)t 0 +  1] (23)

whenever the required conditions a0 6= 0 or a1 6= 0 are satis�ed.

Since the space of states is a circle the time dependent state [ ](t) is a trajec-

tory in this circle. See Figure 9 and compare with Figure 8. For a stationary

initial state the trajectory reduces to a constant. For a complete initial state

[ ] = [a0 0 + a1 1] the resulting trajectory comprises a semicircle joining

the excited stationary state [ 1] to the ground state [ 0]. Which one of the

two possible semicircles depends on the sign of the quotient a0=a1. For t
large negative, (23) and �0 � �1 > 0 implies [ (t)] � [ 1]. At time t = 0 the
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initial state  =  (0) is obtained. For t large positive, (22) and �1 � �0 < 0

implies [ (t)] � [ 0]. The transition energy of a complete 2-level state is the

di�erence �0 � �1.

Remark: In concrete physical situations appropriate energy eigenvalues and

eigenfunctions are understood. Note that in actual laboratory practice iso-

lation of an excited stationary state, say of the hydrogen atom, is a diÆcult

task that can be achieved for a limited time; therefore the state is perturbed

and its motionless condition is lost.

ψ1...

...
0

ψ

...ψ

Figure 9. Trajectories of states. Points in the projective line move

as indicated by the arrows. Eigenstates are �xed points.

9.-Numerical Simulation of Transitions: Assume that the wave func-

tions are functions of a three dimensional vector argument ~r = (x; y; z), so
that  =  (~r). Then the states [ ] can be represented as normalized signed

densities  =
q
h ;  i de�ned over the space of three dimensional vectors ~r.

The time dependent normalized density  (t)=
q
h (t);  (t)i depicts an actual
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continuous and deterministic evolution in three space which for ta � t � tb
realistically represents the evolution from state [ (ta)] to state [ (tb)]. Since

densities are signed (can take positive and negative values) the three dimen-

sional plots of the densities should be colored. To visualize a transition of

states in ordinary three dimensional space corresponding to the �rst line in

Lymann series, the following speci�c numerical data can be used. Let time

t be femtoseconds varying in �2 � t � 2 with increments of, say, 0.05;

a0 = a1 = 1; � = 0:051 (Bohr's radius in nanometers); �, ��0 and ��1 as
in Figure 11. For ~r = (x; y; z) take r =

p
x2 + y2 + z2,  0(~r) = e�r=� and

 1(~r) = (2� � r)e�r=2�. Let x, y and z each vary in the interval [�0:4; 0:4]
with increments of 0:05; these values are nanometers. A �nal expression for

the time dependent normalized density is

 (t)(~r) =
e��0t�(r=�) + (2� � r) e��1t�(r=2�)q
e2��0t�(2r=�) + (2� � r)2 e2 ��1t�(�=r)

(24)

In this particular example densities do not change sign.

10.- Evolution and Projective Coordinates: The evolution of 2-level

states can be described using projective coordinate systems as trajectory of

a point in a line. Consider the domain V0 of f0 and a complete initial state

[ ] = [a0 0 + a1 1]. Since e��0t and e��1t are non-zero for all t the time

evolution [ ](t) = [a0e
��0t 0 + e��1t 1] is also complete and is in V0. The

function f0 transforms [ ](t) into

f0([ ]
(t)]) = (a1=a0)e

�(�1��0)t (25)

Compare with formula (22). This is the trajectory of the one-dimensional

linear system _x = (�1 � �0)x with initial condition a1=a0. Therefore when

transformed by the projective coordinate f0 the evolution of states in a 2-

level system becomes a 1-dimensional linear evolution. Since �1 � �0 < 0

trajectories of (25) approach the origin; see Figure 10 (a) and compare also

with Figures 8 and 4.
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.

.

(b)

(a)

Figure 10. Evolution in local coordinates is linear. Trajectories

of system (25) are shown above in (a) and trajectories of system

(26) are shown in (b).

Transforming the given complete initial state by means of the projective

coordinate system f1 one obtains

f1([ ]
(t)]) = (a0=a1)e

�(�0��1)t (26)

which is a trajectory of the one-dimensional linear system _x = (�0 � �1)x
with initial condition a0=a1. Again, the evolution in the non-linear space of

2-level systems transforms via the projective coordinate system centered at

[ 1] into a linear evolution on the real line. In this case �0 � �1 > 0 and the

linear trajectories are as shown in Figure 10 (b). Compare with Figures 8 and

5. From the viewpoint of the inverses of the coordinates, the 1-dimensional

linear evolution equations (25) and (26) are �tted together using the inverses

g0 and g1 and provide on the non-linear space of 2-level states a globally well

de�ned non-linear evolution.

The three principles of Realism can be used to further clarify some details

about electron transitions and energy radiation. This is the topic of the

sections ahead.
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Figure 11. Energy as function of time for the �rst line in Lymann

series: This is formula 34 with energy given in electronvolts and

time in femtoseconds. Here � = 0:48 eV�1�f s�1. The initial and
�nal energies are ��1 = �3:41 eV and ��0 = �13:64 eV.

11.- Evolution of Energy: A system with initial state [ ] becomes, after

time t, the state [ ](t) = [e��Ht( )] and therefore the energy of the system

at this time is

eH(t) = eH([ ]
(t)) =

hH( (t));  (t)i
h (t);  (t)i (27)

For an initial stationary state [ i] with eigenvalue ��i one has eH = ��i at
all times t. From the expression (27) for the energy as a function of time,

the rate of change of the energy eH(t) can be calculated for any initial state

[ ] as

d eH(t)

d t
= �2�

 hH2( (t));  (t)i
h (t);  (t)i � hH( (t));  (t)i2

h (t);  (t)i2
!

(28)

= �2�(eH2 [ ](t) � e2H [ ]
(t)) (29)
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According to Schwartz inequality, inner products satisfy hw;wihv; vi � hw; vi2
and if v 6= 0 one can write this as (hw;wi=hv; vi)� (hw; vi=hv; vi)2 � 0 which

for w = H( (t)) and v =  (t) gives eH2 [ ](t)�e2H [ ](t) � 0. If the initial state

is an eigenstate then the energy of the system is stationary (deH=dt = 0) and

for all other initial states the energy decreases (deH=dt < 0). Compare with

Figure 11 above.

For 2-level systems with initial state [ ] = [a0 0 + a1 1] the energy at time

t equals

eH(t) =
hH(a0e

��0t 0 + a1e
��1t 1); a0e

��0t 0 + a1e
��1t 1i

ha0e��0t 0 + a1e��1t 1; a0e��0t 0 + a1e��1t 1i
= � �0a

2
0e

2��0t + �1a
2
1e

2��1t

a20e
2��0t + a21e

2��1t
(30)

which for a0 6= 0 or a1 6= 0 transforms into

eH(t) = � �0 + �1(a1=a0)
2e2�(�1��0)t

1 + (a1=a0)2e2�(�1��0)t
(31)

or

eH(t) = � �0(a0=a1)
2e2�(�0��1)t + �1

(a0=a1)2e2�(�0��1)t + 1
(32)

If one takes x = a1=a0 or x = a0=a1 expressions for the evolution of energy in

the projective coordinate systems are obtained. If the initial state is complete

then for t large negative, �0��1 > 0 together with (32) implies eH(t) � ��1;
for t = 0 one gets eH(0) =energy of the initial state; and for t large positive,

�1��0 < 0 and (31) imply eH(t) � ��0. Equivalently limt!�1 eH(t) = ��1
and limt!1 eH(t) = ��0. Stationary initial states, themselves �xed in the

space of 2-level states, have constant energy

eH [ 0](t) = ��0 and eH [ 1](t) = ��1 (33)

independently of t.

For the initial state [ 0 +  1] formula (30) simpli�es to

eH(t) = � �0e
2��0t + �1e

2��1t

e2��0t + e2��1t
(34)
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12.- Radiated Energy: Assume that a given initial state [ ] is such that

for large negative times t < 0 one has eH(t) � ��init; more precisely let

limt!�1 eH(t) = ��init < 0. The natural de�nition of radiated energy for

this initial state is

rH(t) = rH([ ]
(t)) = ��init � eH(t) = ��init � hH( (t));  (t)i

h (t);  (t)i (35)

It was established in section 11 above that for a 2-level complete initial state

limt!�1 eH(t) = ��1 and therefore in the 2-level case the radiated energy is

rH(t) = ��1 + �0a
2
0e

2��0t + �1a
2
1e

2��1t

a20e
2��0t + a21e

2��1t
(36)
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Figure 12. Radiated energy as function of time for a 2-level

system: First line in Lymann series. This is formula 37 with

energy given in electronvolts and time in femtoseconds. Val-

ues of �, �1 and �0 as in Figure 11. The transition energy is

�0 � �1 = 10:23 eV.
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so that rH(t) increases monotonically starting for t large negative at rH(t) �
0, and increasing progressively towards �0 � �1. A simpler expression is

obtained for a0 = a1 = 1, namely

rH(t) = ��1 + �0e
2��0t + �1e

2��1t

e2��0t + e2��1t
(37)

See Figure 12. The total amount of radiated energy equals the di�erence

lim
t!�1

rH(t)� lim
t!1

rH(t) = �0 � �1 (38)

The radiated energy rH(t) is a continuous function of t and takes all from 0

and �0��1. Customary experimental settings usually detect this eigenvalue

di�erence, thus the myth of the `discontinuous quantum jump'. To obtain

intermediate energy values, say �� with ��0 < �� < ��1, would require

to stop the radiation process momentaneously at some state [ ] with energy

eH([ ]) = ��. But in such case �� would be a stationary energy value and

the system would have at least three levels, not two.

13.- Power: The power or intensity of the radiated energy for a given initial

state [ ] is, at time t

pH(t) = pH [ ]
(t) =

drH

dt
= �deH

dt
(39)

and from (29) one has

pH(t) = 2�(eH2 [ ](t) �2 [ ](t)) (40)

In the case of 2-level systems a calculation gives
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Figure 13. Radiation power as function of time for �rst line in

Balmer series. This is formula (42) with �0 = 3:41 and �1 = 1:51.
The area under the rectangle equals the area under pH(t). A con-

stant pulse of duration ÆH = 2:17 fs and amplitude pmax
H = 0:87

eV/fs delivers as much energy as pH(t), namely, the transition

energy �0 � �1 = 1:9 eV.

pH(t) = 2�
(�0 � �1)

2 a20 a
2
1 e

2�(�0+�1)t

(a20 e
2��0t + a21 e

2��1t)2
(41)

When the initial state is [ 0 +  1] the previous formula becomes

pH(t) = 2�
(�0 � �1)

2e2�(�0+�1)t

(e2��0t + e2��1t)2
(42)

The power pH(t) = pH [ ]
(t) attains, for complete initial 2-level states [ ], its

unique maximum at the time of maximum radiation power

Tmax = Tmax([ ]) =
ln ja0=a1j
�(�0 � �1)

(43)
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For a0 = a1 = 1, Tmax = 0. The corresponding maximum value attained by

pH at t = Tmax is

pmax
H = pH(T

max([ ])) =
�(�0 � �1)

2

2
(44)

A crucial property has been established: The maximum radiation intensity

does not depend on the initial state and is proportional to the square of

the transition energy; if the transition energy is doubled then the maximum

intensity increases fourfold.
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Figure 14. Comparison of pH , p
max
H and ÆH for �rst lines of Ly-

mann and Balmer series. Vertical scale is di�erent from Figure 13.

At constant power with amplitude equal to pmax
H the transition energy �0��1

would be radiated in a time interval of length

ÆH =
�0 � �1

pmax
H

=
h

�0 � �1
(45)
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The quantity ÆH has the dimensions of time and is, by de�nition, the emission

time or duration of pH(t). Therefore the emission time of pH(t) does not

depend on the initial state and is inversely proportional to the transition

energy. If the transition energy is doubled then the emission time is halved.

Relations (44) and (45) are consequences of the real evolution equation and

have important implications to be explained in the next section. Power, their

maxima and emission times for �rst lines in Lymann and Balmer series are

shown in Figure 15.

14.- Photons: Photons are the carriers of the transition energy. With the

three stated principles and one additional hypothesis Realism can partially

resolve the structure of photons. Assume then the following

Photon Hypothesis: The energy radiated by the system trav-

els in ordinary 3-space as a localized wave moving parallel to a

straight line L with constant speed c.

In more detail, choose the initial time t = 0 at the instant when the 2-level

system has maximum radiation power and choose the x-axis parallel to the

propagation axis L. At a later instant t > 0, when the system has radiated

all its energy, the photon has an energy distribution P (x; y; z) dx dy dz in

3-space such that
R
P (x; y; z) dx dy dz = �0 � �1; this requires only energy

conservation. The photon hypothesis then says that this energy propagates

in space according to P (x� ct; y; z). The quantity �H(x) =
R
P dy dz is the

energy in the plane Nx normal to L at x. Since x = ct and dx = c dt one has

t = x=c, dt = dx=c and (42) implies

�H(x) = 2�(�0 � �1)
2 e2�(�0+�1)(x=c)

c (e2��0(x=c) + e2��1(x=c))2
(46)

with a unique maximum value given by

�max
H =

pmax
H

c
=

(�0 � �1)
2

hc
(47)

See Figure 15.
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x..

Φ  (x)
Η

N
x

Figure 15. The energy of the photon contained in the normal

plane Nx equals �H(x). Elongated �gure of photon is for illustra-

tive purposes; only �H(x), not P (x; y; z), is known.

Again the evolution equation has provided an important relation: The max-

imum energy density along the propagation axis is proportional to the square

of the transition energy. Double transition energy implies a fourfold increase

in �max
H .

Formula (46) partially resolves the structure of the photon. A more detailed

description of the photon, not yet available, would explicitly give P (x; y; z);
an even more complete description would be a formula for the photon as a

traveling electromagnetic pulse.
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The wavelength � of the photon can now be de�ned as

� =
1

�max
H

Z
1

�1

�H(x) dx =
(�0 � �1) h c

(�0 � �1)2
=

h c

�0 � �1
(48)

Equivalently, � is the length traveled at speed c during an emission time

interval ÆH :

� = cÆH (49)
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Figure 16. Energy density along propagation axis for �rst line

in Lymann series. Time given in femtoseconds and distance in

nanometers with speed of light c = 300 nm/fs. Energy density

is given in electronvolts over nanometers. The area under the

rectangle = area under �H(x) = transition energy �0 � �1 =

10:23 eV. Maximum density �max
H = 0:08 eV=nm. Wavelength

� = 121 nm .
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The de�nition of wavelength implies

�0 � �1 =
h c

�
(50)

This is the formula postulated by Einstein, relating the energy and the wave-

length of a photon. As shown, Realism deduces the formula from the Photon

Hypothesis.

The energy density �H(x) dx does not originate on a periodic or oscillatory

movement of the state. Energy radiation occurs as a deterministically de-

�ned, continuous process. This process is a trajectory in the space of states.

The trajectory begins near the excited stationary state, progresses to interme-

diate states that are reached and left behind, and asymptotically approaches

the ground state. While the system progresses along its trajectory it radiates.

The radiation power pH(t) and the trajectory [ ](t) are non-oscillatory. The

non-oscillatory nature of the energy radiation is clearly illustrated in Figure

16 and for the trajectory itself see Figure 9. Therefore there is no way to

de�ne a physically meaningful frequency � for �H(x). Nevertheless Einstein

formula has traditionally been expressed as E = h�.

Summing up, individual photons are electromagnetic pulses with a wave-

length and are not periodic electromagnetic oscillations with a frequency.

When many individual photons are succesively emitted it can be argued that

a train of waves exist and in this case a frequency can possibly be de�ned.

Reasonable as it is, the de�nition of wavelength for an energy distribution

shaped like �H(x) is, in the last analysis, a convention which together with

the value � = 2=h for the exponent in the evolution equation 20 implies

Einstein formula (50). Had we taken � = 1=h then rede�ning a wavelength

twice longer would still imply 50. But regardless of the exact value of �
Realism establishes that photons with double the energy are emitted in half

the emission time and are packed along their propagation axis in half the

wavelength. Therefore � = 2=h should be considered provisional and the

�nal decision as to whether � equals 2=h, 1=h or some other multiple �=h
is better decided by experiment. One such experiment could be the direct

measurement of �max
H for a photon of known energy.

In a letter to his friend Besso, Albert Einstein stated: `...anyone that claims
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to understand E = h� is a liar'. Certainly the formula could not be compre-

hended on the basis of a qualitatively incorrect unitary evolution equation.

15.- Interpretation os States: According to the Proportionality Princi-

ple states [ ] are proportionality classes of wave functions and are therefore

dimensionless, as are, for example, angles, or any ratios between physical

quantities of the same magnitude. That [ ] is dimensionless should not be

surprising. After all, the Universe has functioned and will function in the

foreseeable future independently of man-made systems of units.

The dimensionless nature of [ ] also means that certain fundamental physical

level has been reached. State [ ] represents an electron without reference to

prede�ned magnitudes. The physical relevance of this construction is con-

tained in the fact that it delinearizes the space of states providing an equally

non-linear evolution equation; this non-linear evolution equation accurately

predicts one of the most basic of microscopic phenomena, namely, energy

radiation. That the speci�c expressions obtained in the previous sections

provide new and consistent physical information as are the formulas for radi-

ated energy, power, duration, wavelength, and others, re
ect the correctness

of Realism.

END


