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Abstract

Operators H in Hilbert space E define in projective space PFE
dynamical systems and an observable. Systems defined by unitary
and by self adjoint operators are considered. Part I studies the finite
dimensional cases and Part II discusses infinite dimensional ones. The
paper contains the Projective Spectral theorem, a mathematical result
relevant for Realism, a deterministic, continuous, chaotic and non-
linear wave theory of atoms based on Schrédinger self-adjoint operator.
The PST is to projective dynamics as the linear spectral theorem is
to linear dynamics.
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PART I. FINITE DIMENSIONAL PROJECTIVE SYSTEMS

1.-Outline. This paper deals with mathematical prerequisites for a continu-
ous, deterministic, non-linear and chaotic wave theory of atoms. The physical
theory is called Realism and is discussed at length in [1]. The purpose of Re-
alism is to explain basic aspects of atomic behaviour in a logical, reasonable
and common sense way without using the Uncertainty Principle, wave-particle
duality, probabilistic interpretation of wave functions, probabilistic reduction
of wave packet, discontinuous quantum jumps, hidden variables, virtual par-
ticles, and so on. Realism is an alternative to Quantism. The mathematical
results and techniques discussed here involve standard tools of Global Anal-
ysis including infinite dimensional manifolds, vector fields, flows and Morse
theory. These appear in a natural way due to the non-linear personality of
Realism. The manifolds of interest are projective spaces and the vector fields
and flows are those to be called projective fields and projective flows. They
arise in the following way. The states of a microscopic physical system are
commonly represented by elements ¥ of a vector space E of wave functions.
However, this representation is known to be not completely accurate; it is
points in the projective space PE ( = space of lines in E or space of Hilbert
rays) that provide the correct representation, and this is the reason to study
these manifolds. Furthermore, the evolution equation of a quantum system

is of the form
o

= AW) (1)

where A is certain linear partial differential operator, usually A = —iH,
H = —V?* 4+ U = Schrédinger Hamiltonian operator.

Equation (1) can be considered as a linear vector field on E. The flow of this
field, to be denoted exp(At), is a one-parameter group of linear transforma-
tions on E. But it has to be a flow on PE the one that gives the physical
evolution. The linear flow induces in a natural way a flow on PE and this
is generated by a vector field or section of the tangent bundle of PE; these
are the projective flow and projective field associated to equation (1), to be
denoted [exp(At)] and X4 respectively. See sections 13-15 for precise defini-
tions. So, projective flows and fields are relevant for the study of microscopic
physical systems. It will be seen that, although related in a simple way, the
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linear and projective flows are rather different in structure.

The main mathematical result presented here is Theorem 1 of section 18. It
is a first and typical case of a class of results that can be called a Projective
Spectral Theorem or PST. For diagonalizable linear operators A over the real
or complex number fields, Theorem 1 describes the projective flow [exp(At)]
in terms of eigenvalues of A and certain vector bundles constructed from the
eigenspaces of A.

The wave theoretical systems used by both Quantism and Realism are infinite
dimensional. However, it will be convenient and useful to discuss in the first
part of this paper finite dimensional projective systems.

2.-Finite dimensional linear Hamiltonians. The finite dimensional uni-
tary linear evolution will be discussed first. Assume in this section that E"
is an n-dimensional complex Hilbert space, n > 2, with Hermitian inner
product (, ); this defines in a natural way a symplectic structure on E".
Consider a self-adjoint operator H : E™ — E™ with simple negative eigenval-
ues —Ag < --- < —A,_1 < 0 and corresponding one-dimensional eigenspaces
Ly, ..., L,_; mutually orthogonal to each other.

Let y € E"™. The vector field —tH or, equivalently, the linear system of
ordinary differential equations
dy

o = () (2)

is a finite dimensional version of the unitary evolution equations of standard
quantum mechanics.

A direct calculation shows that —iH is the Hamiltonian field of the function
1e(y) where

e(y) = (H(y),y) (3)
is the energy function of the operator H on E™. The only critical point of e
is the origin. The linear flow exp(—:Ht) splits as a sum of one-dimensional

complex flows
n—1

exp(—iHt) = P exp(i);I;t) (4)

=0
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with I; : L; — L; the identity operator in the complex line L;. It follows that
all trajectories of equation (2) are bounded and lie in tori. In more detail,
choose for each j a normalized eigenvector y; € L;. The vectors yo, ..., yn-1
will then be an orthonormal basis of E™. Given a state

y O =+ 4 ¢y, € " (G EC (5)

the trajectory of exp(—iHt) with initial condition y(®) is the parametrized
curve

n—1
y =3 explidit) )"y, (6)
J=0

This is contained in the torus which is the cartesian product of circles C},
each contained in the complex line L;, centered at the origin and with radius

r; = |§;0)|; if r; = 0 the circle reduces to a point. The usual analysis
of frequencies, amplitudes and periodicity or quasiperiodicity can be easily
elaborated now.

3.-Finite dimensional projective Hamiltonians. With notations as in
the previous section, for each non-zero y € E™, let L = [y| = {uy|u € C} be
the complex line through y. The complez projective space PE™ is the set of
all these lines

PE" = {lylly € E" —{0}} (7)

This is a compact complex manifold of complex dimension n— 1 (real dimen-
sion 2n—2) with canonical Hermitian, Riemannian and symplectic structures.
Define the projective flow [exp(—iHt)]: PE™ — PE" of equation (2) as

[exp(—iH1)]ly] = [exp(—iHt)y] (8)

and define the projective vector field X_;;y on PE™ as the infinitesimal gen-
erator of the projective flow. If the tangent bundle of PE™ is explicitly
given, then an explicit formula for X_;; as a section of this bundle can be
written out; see equation (32). A calculation then proves that X_;z is the
Hamiltonian field of the function %e g where

en(y) = 7 (9)
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is the energy function (Rayleigh quotient, normalized mean value) of the op-
erator H on PE™. In the geometrical context of [Morse-Cairns] the energy
ep is called Milnor function. See also [Milnor|. Summing up, if a linear flow
is Hamiltonian then the induced projective flow is likewise Hamiltonian.

The energy ey has n critical points, namely, the eigenspaces L; = [y;] € PE",
y;=eigenvector of H. These are critical points of ey (zeros of the derivative
Dep), critical points of X_; (zeros of the Hamiltonian vector field) and sta-
tionary states (fixed points) of the projective flow [exp(—iHt)]. The index
of L; as a critical point of the Morse function ey equals 27; the correspond-
ing critical values are eg(L;) = —A;, with —Ag = absolute minimum and
—Au_1 = absolute maximum. The critical level set ez'(—2,) is a (singular)
real hypersurface (real dimension 2n —3) in PE™ containing just one critical
point, namely, the state L.

The projective Hamiltonian flow can be studied in detail using local projec-
tive coordinates in PE™. This is done as follows. Given [y(¥)] = L(®) ¢ PE"
choose an eigenspace Li not orthogonal to L(®). Such L; always exists be-
cause the eigenspaces span E and y(®) # 0. Let Li be the linear hyperplane
which is the orthogonal complement of the line L. The trajectory of L(©)
is then contained in the set V = PE™ — PL;i (=set theoretical complement
of the projective hyperplane P L) which is invariant under the Hamiltonian
flow. The set V is called in Algebraic Geometry an open affine set. There
are projective coordinate systems h : V — Lit which generalize the classical
stereographic projection; see section 13. It follows that when expressed in
projective coordinates the field X_;5 becomes the linear field

—i(H — M) : Ly — L (10)

which has eigenvalues —i(A; — A¢),7 = 0,...,k = LLk+1,...,n — 1; see
formula (33) in Proposition 3. Therefore, when transformed under projec-
tive coordinates, the trajectory of L(®) € PE™ becomes the trajectory of
R(L®)) € L{t under the linear Hamiltonian vector field —i(H — A¢I). Thus,
R(L®) has trajectory contained in a certain torus 7 C L and it follows that
the trajectory of L(®) is contained h=Y(T) C V C PE™. The local projec-
tive coordinates show that X_;g is a collection of linear Hamiltonians glued
together over PE".
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Note that in local coordinates the trajectories have periodic components with
frequencies |A; — Ag|/(27). But these frequencies depend on the coordinate
system. In a different coordinate system, say centered at L,,, the frequen-
cies are |A; — A, |/(27). Thus, for projective Hamiltonians the frequencies
and periods of trajectories are relative notions that depend on the choice of
projective coordinates.

An important property valid in general for Hamiltonian vector fields on sym-
plectic manifolds is that they are energy conservative. That is, taking any
initial state in the manifold under consideration, the corresponding trajec-
tory is contained in an energy level hypersurface. As a consequence, small
changes in th einitial state of the system, say induced by a small external
interaction, can only result in small energy changes. After the small initial
change the evolution of the system proceeds according to the Hamiltonian
evolution without further energy modifications.

Define a perturbation of the state L as a state L close to L. This means
that in projective space PE™ the distance from L to L is small. In physical
situations, for example an electron bound in an atom, the perturbations can
result from small external electromagnetic interactions.

Systems with space of states PE", energy er and dynamics defined by the
flow [exp(—iHt)] are examples of Hamiltonian systems and verify the above
condition about energy conservation. They do not spontaneously radiate
and the energy is stable under perturbations: If a given state, say L €
PE™, is perturbed to a new state L, there will be an energy change equal to
exr(L) — eg(L) but as time goes on and the system evolves according to the
projective Hamiltonian flow this will be the only energy change. If L is close

to L the energy change will be small.

A related property is that PE™ is connected and ey is continuous and not
identically constant (n > 2). Therefore, the values of ey fill out an interval
of real numbers and under the effect of perturbations the energy differences
eH(z) — ep(L) can take a continuum of values, not just the discrete set
en(Li) — eg(Lm) = Am — A of critical value differences. In other words,
for Hamiltonian systems no energy level is forbiden. This applies to both

radiative perturbations ey (L) < eg(L) and to absorptions ey(L) > en(L).
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4.- Inconsistency of projective Hamiltonian evolution. It is instruc-
tive to contrast the mathematical formalism of Hamiltonian systems with the
physical properties of the hydrogen atom. Consider, on one hand, dynamical
systems having space of states PE", dynamics defined by the Hamiltonian
vector field X_;g and observable ey. On the other hand, recall the behaviour
of the hydrogen atom. Statements HE.1-HE.4 below make clear that pro-
jective Hamiltonian evolution laws are a bad choice to describe atomic phe-
nomena. The statements are typical examples of fundamental contradictions
common in Quantism. Note that, although enunciated for finite dimensional
systems, the statements apply in the infinite dimensional case as well.

HE.1 Assume an initial excited stationary state L® = L, € PE™, k > 0 and
let a small perturbation result in a nearby state L. Then, after certain time
interval, eH([eXp(—th)]z) assumes a critical value —\,,, with —\,, < — Mg,
and remains stationary there. Hence perturbations of stationary states induce

an enerqy change equal to an eigenvalue difference A — A,,,.

Statement HE.1 is true for atoms and false for the Hamiltonian dynamical
system under consideration. It corresponds to discretization of the energy
radiated by an excited bound electron. For both finite and infinite dimen-
sional Hamiltonian systems the statement is false. This is the first example
of fundamental contradictions between quantum evolution equations and the
physical behaviour of atoms.

HE.2 Consider an initial stationary state L(® = L, € PE™, perturb it to a
new state L with eH(Z) = -\ > en(Ly) = Ap and assume that — ) is not
an eigenvalue of H. Then, under the Hamiltonian evolution, the state L will
evolve until a stationary state L, is reached so that the energy energy of the
system becomes an eigenvalue ey(Ly,) = —A,. The total energy change is
an eigenvalue difference A\, — A,

Property HE.2 corresponds to discretization of the energy absorbed by a
bound electron. It says that after an absorption process the state reached by
the system will evolve radiating energy until a stationary state is reached.
The statement is true for atoms but obviously false for Hamiltonian dynam-
ical systems. This is the second example of a fundamental contradiction of
Quantum theory.
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HE.3 The state L = Ly € PE™ at which ey attains its absolute minimum
15 the only stationary state with the property that small perturbations cannot
induce radiation.

This says that the ground state is the only state with stable energy, as op-
posed to excited stationary states, which under small perturbations radiate.
This is a contradiction because excited atoms do radiate spontaneously but
Hamiltonian systems do not. Again, in Hamiltonian systems all states are
energy stationary: They evolve without radiating energy. Quantism explains
the physical stability of the ground state, as opposed to the unstability of
other stationary states, invoking the uncertainty principle.

HE.4 If a stationary state Ly, is perturbed to a nearby state L then, according
to certain probabilities that depend on L, the trajectory [exp(—iht)|L will
become a new stationary state L, with —X,, < —X\.

Property HE.4 above refers to ‘transition probabilities’. It is true that atoms
radiate in an apparently spontaneous manner but, once more, Hamiltonian
dynamical systems do not behave that way because they are deterministic
and energy conservative. This is the fourth and last contradiction chosen
here to illustrate the inconsistency of quantum evolution equations when
compared with the physical behaviour of atoms.

It is a fact that HE.1-HE.4 are true for atoms and false for the energy
conservative dynamical systems postulated by quantism. They remain false
if E” and H : E™ — E™ are replaced by an infinite dimensional Hilbert space
E and a self-adjoint operator H : £ — E. Quantum mechanics has raised
property HE.4 to the status of a physical law. This hides the inadequacy
of Hamiltonian evolution and creates a contradictory situation. Hamiltonian
evolution and transiton probabilities contradict each other. The quantum
treatment of HE.4 can be described for finite dimensional systems as follows.

The observable being ey, each state L = [y] = [Covo+ - + Ca1Yn_1] € PE"
is considered as a random variable with values in {—Xg,...,—X,_1}. The
probability (notation of formula (5)) that the variable L assumes the value
—Xjis p; = |¢|*/{y,y). When the system is in state L a ‘measurement’ of
ep gives the value A; with probability p;.
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Since the results of measurements are not eigenvalues but rather eigenvalue
differences, it is less unnatural to regard L as a random variable with values
in the set {Lo,..., L,_1}, the probability of L; being p;. So, state L will
perform the famous ‘quantum jump’ to state L; with probability p; and will
remain there with probability 1; however, perturbations will result in a state
L near L;, and L will jump to another stationary state, and so on. This
process continues spontaneously until the ground state Ly is reached. The
probabilities p; still have to be normalized because L cannot spontaneously
jump to L, if eg(L) < —A,; otherwise energy is spontaneously created by
the system violating the principle of conservation of energy. Therefore, if
en(L) < =Xy let p,, = 0, and if eg(L) > —A; replace p; with p; = p;/o
where o = Y, ps, the sum taken over all s such that eg(L) > —A;. The
probabilities of a ‘quantum jump’ should be given by the p;.

But this quantum procedure is unsatisfactory because the Hamiltonian pro-
jective vector field is still assumed to govern the system and the probabilistic
quantum jumps are in open contradiction with the energy conservative be-
havior typical of Hamiltonian systems. A better alternative would be the
following. Once the critical points L; are determined, the system formed
by the manifold PE™ and observable ey can be analyzed under the above
probabilistic interpretation of states without postulating any flow on PE™.
Still the results will resemble HE.1-HE.4. Such hypothetic purely proba-
bilistic theory is a theory without continuous dynamics, that is, no flow is
assumed in the space of states. In particular, the Hamiltonian flow is seen to
be wuseless. It is not unfair then to say that the probabilistic interpretation
of L is an ad-hoc argument to force properties HE.1-HE.4 into Hamiltonian
systems.

Next, linear and projective vector fields that are the gradients of energy
functions will be discussed and their behaviour will be compared with known
properties of atoms.

5.-Finite dimensional linear gradients. Assume now that E™ is an n-
dimensional Hilbert space, either over the real or the complex number sys-
tems. The inner product (,) is Euclidean (real) or Hermitian (complex)
depending on the scalars. In the complex case the real part of the Hermitian
product is an Euclidean product. Hence for any choice of scalars E™ has
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an Euclidean inner product and therefore real valued smooth functions with
domain an open set in E™ have well defined gradients. The hypothesis on the
operator H : E™ — E™ are as in previous sections: H is self-adjoint with real,
negative and simple eigenvalues —XAg < -+ < —\,_; < 0 and corresponding
one-dimensional eigenspaces Lo, ..., L,_1. This means that H is equivalent
in some orthonormal basis to a diagonal matrix with real, negative and un-
equal elements on the diagonal. The eigenspaces L; are real or complex lines
according to the field of scalars being the real or the complex field.

Consider the linear differential equation defined for y € E™ by the self-adjoint

operator —H ;

Y
o = HW) (11)
Equivalently, consider the the vector field —H : E® — E". This field is the
gradient of the energy function —%e(y) where, as before, e : E™ — R is given
by e(y) = (H(y),y). The energy —1e¢ > 0 is an unbounded above Morse
function and has a single critical point, namely, a minimum at the origin.

The linear flow decomposes as a product of one-dimensional flows

n—1

exp(—Ht) = P exp(\;1;t) (12)

=0

with I; : Lj — L, the identity; therefore the linear flow is ezpansive, |Uy(y1)—
Ui(y2)|| = |lyr — y2]|, and the origin is the only fixed point. All trajectories
outside the origin diverge towards infinity and —%e increases without bound
along them.

Linear expansive flows have a simple geometric interpretation: They are
topologically equivalent to the flow exp(It) generated by the identity opera-
tor I : E™ — E™. Such flows do not provide a sound model for microscopic
physical systems. Here the dynamics is not better suited to atomic phenom-
ena than the linear or projective Hamiltonian dynamics previously discussed.
However it is a fact that the eigenvalue differences of Schrodinger Hamilto-
nian operator

—-V*+U (13)

agree with the energies of photons emitted by the hydrogen atoms and mea-
sured in laboratory experiments. Therefore it is natural to look at evolution
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equations obtained, one way or another, from operator (13). Schrodinger evo-
lution equation, or equivalently the linear flow exp(—i(—V?* + U)t), was the
dynamics historically selected. But, once more, this Hamiltonian dynamics
is not satisfactory.

The non-linear projective flow [exp(—(—V2+U)t)], induced on real projective
space by the linear flow exp(—(—V? + U)t), does not seem to have been
considered in microscopic physics as a valid general evolution equation for
atomic systems. This projective flow is the alternative to quantum dynamics
that will be explored in the present work.

6.-Finite dimensional projective gradients. The assumptions are as in
the preceding section. Hence, E™ is an n-dimensional vector space over the
real or over the complex numbers and H is self-adjoint with simple negative
eigenvalues. For 0 # y € E" let L = [y] = {py|p € K} with K =field of real

or complex numbers. The projective space is therefore

PE" = {[ylly € E" —{0}}

In the real case (resp. complex case) PE™ is a compact manifold of di-
mension n — 1 over R (resp. dimension 2n-2 over R) and has a canonical
Riemannian metric (resp. a canonical Hermitian metric); see formula (40)
in section 20. The real part of the Hermitian metric is a Riemannian met-
ric, therefore in both the real and complex cases gradients of real valued
differentiable maps with domain PE™ are well defined. The projective flow
associated to (11) is defined as

[exp(—H1)][y] = [exp(—H1)y] (14)

and the projective field X_pg is by definition the infinitesimal generator of
this flow.

A computation proves that X_g is the gradient of the function —%GH where
the energy map or Rayleigh quotient ey is given by

_ (H).y)
(y,9)

This is the same expression as (9), but now the domain can be either real or

(15)

complex projective space. The energy ey is a Morse function with n critical



Crespin: PDS&R 12

points L; € PE", j =0,...n — 1. The index of L, is j (resp. 2j) in the real
case (resp. in the complex case). The critical points are isolated because the
eigenvalues are simple.

It follows from rather general arguments of Morse theory that the gradient of
the function —%eH has a flow that is hyperbolic at critical points. The stable
manifold of L; has in the real case (resp. in the complex case) dimension
n—j—1 (resp. dimension 2(n — j — 1)). Thus, the projective flow (14) is as
expected for the gradient of a Morse function on a compact manifold. But
for a detailed description of projective gradient flows the general apparatus
of Morse theory is not necessary. Elementary arguments suffice to prove that
projective flows are hyperbolic, to calculate the limits of trajectories and to
specify the stable and unstable manifolds.

As was the case with projective Hamiltonians, the projective gradient flows
are analyzed by means of local projective coordinates in PE™. Again, choose
an eigenspace L; not orthogonal to L, and let A : V — Li be the cor-
responding projective coordinate system. If transformed under these co-
ordinates the projective gradient flow [exp(—Ht)] becomes the linear flow
exp(—(H — MI)t) in L. Note that this linear flow is hyperbolic on its do-
main L = @k Lj, with stable and unstable manifolds equal to @, L;
and @, L; respectively. This follows from the signs of the non-zero eigen-
values —(A; — Ax) = Ax — A; that correspond with the eigenspaces Lj,
7 =0,....,k—1,k+1,...,n — 1. The projective coordinate transforma-
tions show that X_g can be viewed as a collection of linear hyperbolic flows
glued together over PE™. See Proposition 2 on section 14 and Proposition 3
on section 15.

7.-Stable and unstable manifolds. The relation between the linear and
projective flows of equation (11) can be described geometrically as follows.
Consider formula (5) but let now the coefficients Céo), e C,ﬁo_)l be real or com-
plex scalars. The trajectory of exp(—Ht) with initial condition y = y(0) =
y©)

i) = 3 e, (16)

As t — 400 the point y(¢) moves along a diverging trajectory and the line
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L = [y(t)] pivots around the origin approaching some eigenspace Ly, which
for the given initial state L(® = [y()] is determined from (5) by looking
for & = minimum of the integers j such that (; # 0. The reason for this
behaviour is that the one-dimensional components exp(A;t) of the linear flow
have different rates of growth that depend on A; and for ¢ — 400 the first
nonzero A;, namely A;, dominates. This implies that in PE" the stable
manifold of the stationary state Ly is the set of the states L = [y] for which

Co=...= (k-1 =0 and ¢ #0.

In a more concise notation, with k£ as above, the stable manifold of Lj is
P(Lg+---+L,_1)— PL{ (set theoretical difference of projective subspaces);
this is an open affine set in P(Ly 4+ --- + L,—1). By a similar argument
the unstable manifold of Ly is P(Lg + --- + Lx) — PLj. In general, given
L = [Coyo+- - +Cn1Yn_1] € PE", if m and k are the maximum and minimum
of the integers j with (; # 0, then the trajectory [exp(—Ht)]L comes from
L,, and goes to L. In other words, L,, and Ly are the a-limit and w-limat
of the trajectory of L:

a(L) = limy__s[exp(Ht)|L = L,

W(L) = limy_.[exp(—H)]L = Ly (17)
Define also the energy a-limit and energy w-limit of L as
ey(L) = limy_o ep(lexp(—Ht)|L) = eg(Lm) = —An (18)

lims oo e ([exp(—Ht)|L) = eg(Li) = — Ak

)]
e
=

|

8.-Energy changes. If the trajectory of [exp(—Ht)]L comes from its a-limit
L,, and goes to its w-limit Ly then the energy change along the trajectory
is defined as ey(Li) — eg(Lm) = =Mk — (—Am) = A — Ak, an eigenvalue
difference.

The Principle of Conservation of Energy implies that, given the energy of
an initial state, any additional energy that the system aquires has to be
absorbed from outside the system and any energy that the system losses is
radiated outside the system. If the energy change of the system is negative
then the outside gains energy. If the energy change in the system is positive
then the outside losses energy. Energy changes of the system that are equal
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to an eigenvalue difference corresponds to an eigenvalue difference of energy
radiated or absorbed by the system, with sign conventions distinguishing the
two cases.

Consider now an initial stationary state L, and perturb it to a nearby state
L, Assume that the energy difference is small: lear(Ly) —en(Ly)| < e. If the
w-limit of L, is Ly then, for L, not too far from L, one has &k < p. Therefore
the system will evolve towards Ly with energy change ey (Ly) — eH(z)p and
this is equal, up to €, to the eigenvalue difference Ai),,,. This means that the
total amount of energy the system radiates when perturbed away from a sta-
tionary state is almost exactly an eigenvalue difference. Physically, the small
difference € is usually attributed to the ‘finite bandwidth ’ of spectral lines or
to ‘background noise’. The discussion illustrates how energy discretization
is a natural consequence of projective gradient dynamics. Starting from a
perturbed stationary state the system dissipates energy in the most efficient
way (down the energy gradient) and the state evolves continuously until a
new stationary state, a state locked in itself, is attained. An eigenvalue dif-
ference of energy is radiated. If the new stationary state is not the ground
state then it is unstable: Small perturbations destabilize the state and again
continuous evolution way down the energy gradient will radiate a quantity
of energy equal to an eigenvalue difference. The process repeats until the
ground state is reached.

This contrasts with the Hamiltonian evolution equations of quantism that
cannot predict energy discretization and in order to mimic atomic behaviour
require especially tailored quantization postulates. Still worse, the postu-
lates do not complement but rather contradict the Hamiltonian evolution
equations. If evolution occurs according to projective Hamiltonian equations
then transitions between stationary states, and probabilistic quantum jumps
in particular, cannot occur. Allegedly non-deterministic and discontinuous
phenomena, considered by quantism a paradigm of Nature, are in reality
imaginative contradictions of a mistaken theory.

In projective gradient systems, besides the total energy change along a tra-
jectory, energy can also be considered as a function of time. These consid-
erations are impossible in the energy conservative Hamiltonian systems of
Quantism. So, let L = L®®) € PE™ be an arbitrary initial state (at time 0)
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so that at time ¢ > 0 the state of the system becomes L") = [exp(—H?t)] L.
The energy radiated up to time t by this trajectory is by definition

G(t) = ~(en(LV) - e4I)) (19)

and the intensity or output rate of the energy being radiated at instant ¢
equals the derivative g(t) = G'(t). A computation gives

g(t) = 2(em> — eg)(LY) (20)

In the wave theoretical (infinite dimensional) case the physical assumption
can be made that the energy radiated by an atom propagates in ordinary
space with constant direction and speed ¢. The energy distribution along the
axis has, at point @ = ct, density (1/c)g(t/c). This provides both a proof
and an interpretation of Einstein formula

e

A\
A

(21)
relating the energy A\ and the wavelenght A of a photon. For details see sec-
tion 25 below and Chapters 4 and 5 of [1]. The functions ¢(t) and (1/¢)g(t/c)
are enerqy packets.

The following additional terminology is illustrative. It translates physical
phenomena into dynamical properties of flows. The term ‘almost’ will be
abbreviated ‘a-’. An a-stationary is a state Lj close to a stationary state
L;. An a-transition, denoted L,, — L, is a trajectory [exp(—Ht)L] with
to < t < t; and such that L,, = lexp(—Hto)]L is an a-stationary state close
to L,, and L = [exp(—Ht1)|L is an a-stationary state close to Ly; to and ¢,
are the initial and final times of the a-transition.

If an a-transition is between adjacent a-stationary states, that is, if m = k+1,
then the energy output rate g(¢) has a single maximum and no local minima
in the open interval (¢o,¢;). If m = k + 2 and if the trajectory from EM to
ik is away from the intermediate stationary state Ly, then again there is a
single maximum; but if the trajectory passes near Liyq then g(t) decreases
there to grow later again and therefore will have two local maxima with
a local minimum in between. In case m = k + d with d > 1 there are a
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number of possibilities for ¢g(t), depending on the proximity of the trajectory
[exp(—Ht)]zm to the stationary states L;, k < j < m. These possibilities
range from a single maximum to d local maxima and d—1 local minima in the
open interval (to,?1). An a-transition L,, — Lj can look, from the viewpoint

of radiated energy, as several successive a-transitions L,, — L,y — -+ —

Ly.

9.- Consistency of projective gradient evolution. In statements HE.1-
HE.4 physical properties of microscopic systems were found in contradiction
with Hamiltonian evolution. Four similar statements GE.1-GE.4 will be
now formulated and the discussion will show that the physical properties
in question are consistent with projective gradient evolution. The relevant
mathematical properties of projective gradient systems have been explained
in sections 6-8.

GE.1 Consider an initial excited stationary state L = L,, with m > 0. If
a small perturbation produces a nearby state L, then the system will evolve
towards the stationary state Ly = w-limit of Em, k < m. The total enerqgy
radiated 1s, up to a small term, an eigenvalue difference A\ — A,

This says that the radiated energy is discretized, a typical behaviour of elec-
trons bound in atoms. For projective gradient evolution the hyperbolicity
of L,, is the qualitative reason for spontaneous radiation: Either the initial
state is very close to a stationary one, but is not exactly stationary, or small
perturbations destabilize the stationary state and result in energy radiation.

Consider again an initial stationary state L,, and let the system absorb en-
ergy. It can be assumed that this energy has been radiated from some source
under the form of an energy packets as in formula (20), the total energy of
the packet being A. The absorption process forces the system to evolve along
certain curve in PE (a curve that is not a trajectory of the projective gradi-
ent field X_g). The interaction with the incoming energy packet produces
this behaviour. Once all the incoming energy is absorbed a certain state L is
reached by the system. Conservation of energy requires that eg(L) = A, +A.
If X is not an eigenvalue difference then ey(L) cannot be an eigenvalue of
H nor can L be stationary. The system will immediately radiate energy
back. Hence, the energy absorbed will not result in a stationary state unless
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A =eigenvalue difference. Therefore systems that obey a projective gradient
evolution law absorb energy in discrete packets.

Note that there exist states that are non-stationary but have energy equal
to an eigenvalue, —J\,,. Therefore an incoming amount of energy equal to
an eigenvalue difference does not necessarily result in the system reaching a
stationary state. The condition is necessary but not sufficient.

Once a non-stationary state L has been reached at the completion of the
absorption process there are several possibilities for the the behaviour of the
system, depending on the first a-stationary state Zp reached by the system,
begining in L and evolving way down the energy gradient.

a) If p = m then the system returns near the initial stationary state L,,
radiating an amount of energy (almost) equal to A. This resembles elastic or
Rayleigh scattering.

b) If p > m then the system will radiate energy by an amount A— (A, —A,,,) <
A. This is similar to Raman scattering with Stokes line.

¢) If p < m then the system will radiate energy by an amount A — (A, —A,,,) >
A. The situation is like Raman scattering with anti-Stokes line.

These considerations lead to the following

GE.2 Let L,, be an initial stationary state and let the system absorb an
amount of enerqy equal to X\. If X is not an eigenvalue difference, A # A, —
Ak, no stationary state is reached and energy is radiated back. A necessary
condition for a stationary state to be reached is that the amount of incoming

enerqy be an eigenvalue difference, A = A\, — Ag.

Statement GE.2 is the discretization of absorbed energy. Compare with
statement HE.2.

GE.3 The ground state Lq is the only stable stationary state.

Statement GE.3 is true because the flow [exp(—Ht)] is generated by the
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gradient of the energy function —%GH and this function has a unique stable
critical point Lg, an absolute minimum. Lg is the ground state and does not
radiate because it is the bottom of an energy well. The stability of the ground
state is a most natural consequence of gradient evolution . No uncertainty
principle is required. Compare with the corresponding Hamiltonian case

GE.4 Gwen a stationary state L, and k < m, any neighborhood of L,
contains perturbations L,, that make a-transitions to Ly.

Therefore for k& < m and with sensitive dependency on the perturbation,
there are a-transitions L,, — L. Statement GE.4 is a particular case of
properties discussed in section 8. More specifically, let L., = [ym], Lr = [y]
and L, = [aym + bys]. Given any neighborhood of L,, in PE", if b/a is close
enough to 0 the state L., belongs to the neighborhood and the trajectory

[exp(—Ht)|L,, is an a-transition as required. Note that this is in fact an
exact transition since the w-limit of the trajectory is w(Las) = L.

If sensitive dependency on initial conditions is taken as the definition of chaos
then statement GE.4 says that projective gradient flows are chaotic. This
determistic and continuous but chaotic behaviour at critical points has been
explained by quantism as an intrinsically random and discontinuous physical
phenomenon. Compare with statement HE.4.

Gradient projective vector fields can be used instead of projective Hamiltoni-
ans and the resulting dynamics reflects more accurately the known behavior
of atoms. It is no longer necessary to have a probabilistic interpretation for
states and the flow plays its natural role, namely, to tell how states evolve.
All the arguments given so far generalize to the infinite dimensional case
H = —V? 4+ U =Hamiltonian of the hydrogen atom.

10.- Conclusions from finite dimensional cases. The various dynamical
systems considered so far can now be compared. The linear flow exp(—iHt)
and the induced projective flow [exp(—itHt)] are defined in symplectic mani-
folds and are Hamiltonian. There is one critical point in the linear case and n
in the projective case. In general, trajectories of Hamiltonian flows are con-
tained in energy hypersurfaces (surfaces of constant energy). The projective
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Hamiltonian has a more sophisticated dynamics than the linear Hamiltonian.
Nevertheless, these Hamiltonian flows contradict the most basic properties
of atoms.

The linear flow exp(—Ht) and the induced projective flow [exp(—Ht)] are
gradients of Morse functions with one and n hyperbolic critical points re-
spectively. The linear gradient has unbounded divergent trajectories and the
projective gradient has trajectories that go from one critical point to an-
other. All these trajectories dissipate energy. Again, the projective gradient
flow has a more elaborated geometry than the linear gradient flow. Projec-
tive gradient flows predict, much better than projective Hamiltonian flows,
fundamental properties of atomic behaviour.

The projective flows [exp(—iHt)] and [exp(—Ht)] have the same critical
points on PE"™. However, as shown in the previous sections, these two flows
have very different dynamical structures that reflect the deep difference be-
tween standard quantum mechanics and Realism.

11.-Energy output rate. Let X be a vector field, k > 0. Then X and
kX have the same trajectories except for reparametrization. Hence, if in the
previous discussion eg is left the same and the projective flow [exp(—H1)] is
replaced by [exp(—xHt)] then equation (20) becomes

g(t) = 2k(ey2 — efq)(L(t)) (22)

In physical situations one has H =Hamiltonian operator and x is a constant
with dimensions 1/[Action]. If the value of & is postulated as

K= — (23)

with h=Planck constant then Einstein formula (21) can be proved and inter-
preted. In the finite dimensional case the value k = 1 has been assumed in
order to simplify the discussion.

PART II. INFINITE DIMENSIONAL PROJECTIVE SYSTEMS
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Projective vector fields, projective flows and energy maps defined in projec-
tive space will be now discussed in the infinite case dimensional case. These
projective systems will be constructed starting from a single self-adjoint op-
erator on Hilbert space.

In linear operator theory basic versions of the Spectral Theorem apply to
operators H : E — E in the following cases:

1.- E is complex and H is self-adjoint.
2.- E is complex and H is normal.

3.- E is real and H is self-adjoint.

4.- E is real and H is normal.

The version of the Projective Spectral Theorem presented here, Theorem 1
below, applies as follows: In cases 1 and 2, to the flow [exp(—Ht)] on complex
projective space. In case 3 to the flow [exp(—Ht)] on real projective space.

12.-Terminology and notation. A general source for the mathematical
theories of Global Analysis is [Abraham]|. Let E, F' be Hilbert spaces over
the real numbers or over the complex numbers. Denote by Hom(E, F) the
(Banach) space of continuous linear maps from E to F and by I = Iy :
E — F the identity map. The inner product, whether real or Hermitian,
will be denoted (, ). Basic examples of particular interest here are LE&(R?)
and L (R?), the spaces of real and of complex valued square integrable
functions with domain R3. Vector subspaces of E are always assumed to
be closed and linear maps, operators or linear forms are continuous. If F
is a subspace of E let F'* be the orthogonal complement of F' in E and
let Qr : E — E be the orthogonal projection over F' with kernel F*. For
sets 51,52, prj + S1 xSz — S;, 3 = 1,2, are the canonical projections

PTJ‘(31752) = S5j-

A smooth map is a function with domain an open set in some Banach space,
with values also in a Banach space and such that derivatives of all orders exist
at all point of the domain. For U open in E and f: U — F a smooth map,
the derivative of f at w € U is a linear map Df(u) : E — F. A manifold
M means a smooth manifold modelled in some Banach space. For x € M,
T, M is the tangent space at x. Let 7M = (T M, g, M) be the tangent vector
bundle of M. Here TM = ,cp TxM is the space of all tangent vectors
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and ¢ : TM — M is the projection. Maps f : M — M’ between manifolds
are smooth if whenever expressed in local coordinates the result is a smooth
map between Banach spaces; the derivative of such f at @ € M is then a
linear map D f(x) : ToM — Ty M'. The bundle derivative of f is the vector
bundle map T'f : TM — T M’ defined by the condition T f|T,M = D f(z).

Vector bundles are always smooth and locally trivial, and will be denoted
¢ = (B,q,Y), with B =total space, Y =base space, g =projection and
F, = ¢ '(y) =fibre over y € Y. So, B and Y are smooth manifolds and
F, is a vector space. It will be assumed that local trivializations of vector
bundles can be chosen with typical fibre a Banach space. The total space and
projection of the vector bundle ¢ will also be denoted B and g¢. A bundle
operator or bundle endomorphism is a map f : B — B, sometimes denoted
f & — & such that gof = ¢ and which is linear on fibres. The identity
bundle operator I : £ — ¢ has f = Ip : B — B, the identity map.

A smooth map U : M x R — M is a flow or one-parameter group on M
if the collection U; : M — M, t € R, satisfies the conditions Uy = Iy and
Ui oU, = Uy, 41,. Here Uy is defined by the formula Uy(x) = U(¢,z). A flow

in a Hilbert or Banach space E is a linear flow if each U; : E — FE is linear.

Recall that scalars are real or complex, depending on the Hilbert space under
consideration being a real or a complex vector space. Let u be a scalar. For
a Hilbert space E with identity operator I : E — E define the scalar linear
flow as the flow exp(ult) = (e*)I. This flow is well defined even if E is just
a vector space without norm.

Let £ = (B,q,Y) be a vector bundle with fibres F,,, y € Y. A bundle flow is
a flow U on B such that U; : € — £ is a bundle operator. Define the scalar
bundle flow as the unique flow exp plet : £ — ¢ which on each fibre F, equals
the scalar linear flow exp(ulyt). Here I,=identity operator on F,.

13.-Projective spaces and charts. The projective space associated to E
is

PE ={L C E|dimL =1}
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Equivalently, for ¥» € E — {0} let [¢)] denote the line through v, then
PE ={[{]|¢ € E—{0}}

Projective spaces are smooth manifolds modelled in hyperplanes of E. Each

g € E — {0} defines a chart. To see this, let Ly = [tbg] and consider the
open affine set Vo = PE — PLg (set theoretical difference). Then the chart
ho : Vo — L is defined for L € Vj by the expression

ho(L) + o = (L& + ) N L (21)
or equivalently, for (¢, 1) # 0,
(o, )¢ — (¥, %0)Y0
<77Z)7 1/)0>

The chart hg is a projective coordinate system. 1t can be seen that if a pair of
open affine sets overlap then the corresponding coordinate change is smooth.
If Fis a (closed) subspace of E then PF is a submanifold of PE. The
tangent bundle of PE is denoted TPE = (T PE, q, PE).

ho([¥]) = (25)

14.-Projective flows. Let A : F — E be a bounded linear operator with
(bounded set of) eigenvalues Ag, Ay, ... forming a discrete set in K = R or
K = C. So, the eigenvalues are real if £ is a real Hilbert space, and complex
if £ is complex. Let the corresponding eigenspaces be Fy, FY, ... with identity
operators to be denoted I; : F; — F;. Throughout this paper the assumption
will be made that the eigenspaces E; are mutually orthogonal and span E.
In other words, A is diagonalizable over some orthonormal basis. The basic
example to keep in mind is £ = Lj(R?) =space of square integrable K-
valued functions defined on R?, A = H =Schrodinger hamiltonian operator
for a bound system, say, for the hydrogen atom. The above hypothesis on A
the linear flow exp(At) is defined for all ¢ and splits as an infinite product of
one-dimensional flows

exp(At) = éexp()\jfjt) (26)

Note that the subspace generated by any subcollection of the the F}’s is
invariant under A and therefore under exp(At). In particular orthogonal
complements of eigenspaces, Fi- = @, Fj, are invariant.
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The operator A can be considered as a linear vector field on E and the
solution curve of this vector field for a given initial condition v» € E is
t — exp(At)y. Note that for k # 0, A and kA have the same eigenvectors
while the eigenvalues of kKA are kA;.

Since exp(At) is a one-parameter linear group on E it induces a flow [exp(At)]

on PE, the projective flow of A, defined for ¢» € PE by the formula

[exp(At)][¢] = [exp(At)y] (27)

Let L = [¢)] € PE be a stationary state (fixed point) of the projective flow,
that is, let [exp(At)y] = [¢] hold for all ¢ € R. Then there is a smooth
scalar valued function A(¢) with A(0) = 1 such that exp(At)y = A(¢).
Taking derivatives on both sides it follows that A(exp(At)y) = N (¢)v, hence
ANB)) = XN(t)h. But then (N(¢)/A(t)) = A() is independent of t.
Therefore A(t) = exp(A(0)t) and A(e) = A'(0). This proves the following:

Proposition 1. L = [¢)] € PE is a stationary state of the projective flow
[exp(At)] if and only if L is an eigenspace of A. Equivalently, if and only if
Y 1s an eigenvector of A.

Therefore in order to explicitly determine the fixed points of [exp(At)] it is
necessary to explicitly solve the eigenfunction problem A(y)) = M. Note
that, by Proposition 1, the set of stationary states of [exp(At)] is the disjoint
union of the projective subspaces |J;Z, PF;. Therefore Ly € PFy is an iso-
lated stationary state if and only if A; is a simple eigenvalue, if and only if

PF, = {Ly}.

Remark. Proposition 1 provides a proof of the Fundamental Theorem
of Algebra. Knowledge of the Euler characteristic of complex projective
spaces and of Hopf Theorem on the existence of zeros of vector fields over
manifolds with non-zero Euler characteristic are also required. Let p(z) =
2"+ ap_12" "+ - -4a1z+ag be a complex polynomial, n > 0. The companion
matrix (or Frobenius matrix) of the polynomial p(z) has characteristic poly-
nomial equal, up to sign, to p(z) itself. Let A be the linear endomorphism
of C" defined by the matrix and let X4 be the associated projective vector
field on PC”™. Since the Euler characteristic of PC™ is n # 0 it follows that
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X4 has a zero. By Proposition 1, A has an eigenvector and therefore p(z)
has a root.

Let [x] = Ly € PFy be a stationary state of [exp(At)], Vi, = PE — PL{
the corresponding open affine set. The projective coordinate system hy :
Vi — Li defined by v and centered at Ly transforms the projective flow
[exp(At)] into a certain flow U, : L — Li-. For n € Lj these are related by
the formula

Ue(n) = hu([exp(At)]hi* (n)) (28)
From equation (25) it follows that
hi (n) = [0+ ¥x] (29)

and a calculation then gives
Ui(n) = exp(At e It)n (30)

This proves

Proposition 2. If transformed under the projective coordinate system cen-
tered at the stationary state Ly € PFy, the projective flow [exp(At)]: PE —
PE becomes the linear flow exp((A — M\ I)t) : L — Li.

Since the eigenspaces of A span E the domains of projective coordinate sys-
tems centered at fixed points cover PE, therefore Proposition 2 means that
the projective flow can be considered as a collection of linear flows glued
together over PE.

15.-Projective fields. By definition the projective field X, induced by A
is the infinitesimal generator of the projective flow [exp(At)]. Thus, X4 is a
section of the tangent bundle TPE. For the tangent space to PE at L there
is a canonical isomorphism

T, PE = Hom(L, L") (31)
which gives rise to an explicit formula for X4, namely

Xa(L)y = Qro(A(Y)) (32)
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Here X4(L) € Hom(L,L*), ¢» € L and Q. is the orthogonal projection
with image L*. Proof of the isomorphism is given in section 29.

Formula (32) implies that X4 depends linearly on A, that is, Xaya =
Xa+ Xy and Xy = AX4. The stationary states of X4 are the fixed
points of [exp(At)], given in Proposition 1. The following is a consequence
of Proposition 2:

Proposition 3. If expressed in the projective coordinate system centered at
the stationary state [V = Ly € PF} the projective field X becomes the
linear vector field

A—MNI: L — Ly . (33)

Therefore the projective field can be considered as a collection of linear vector

fields glued together over PE.

16.-Projective flows and normal bundles. This section describes the
bundles and flows that appear in Theorem 1, section 18.

The following has been established so far for the projective flow [exp(At)].
The stationary states are given by eigenvectors of A (Proposition 1), near
the stationary state Lj the flow [exp(At)] is equivalent to the linear flow
exp((A — AI)t) (Proposition 2) and, again near the stationary state, the
infinitesimal generator X4 is equivalent to the linear vector field A — A1
(Proposition 3).

Consider an eigenvalue A\ with eigenspace Fy. All [¢x] € PFj are critical
points, hence the flow is constant on PFj. It turns out that the invariant
open set PE — PF}- provides a convenient neighborhood of PFy in PE to
analize the behaviour of [exp(At)] around the fixed point set PFy. It will be
proved in the next section that this open set is in a natural way the total
space of a vector bundle over PFy. Denote this bundle by v(Fi, E). The
notation refers to the fact that the bundle can be identified with the normal
bundle to the submanifold PF}, in PE.

For the special case dim Fy, = 1 the projective subspace PF} reduces to a
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point and V = PE — PF{, an invariant open affine set already defined in
section 13 as domain of a projective chart, is the total space of a vector
bundle over the single point Ly € E. For the general case, that is, for Fj of
arbitrary dimension, PE — PF}- can be considered as a generalization of the
open affine sets that provide domains for the projective coordinate systems.

In the next section it will be seen that each fiber of the bundle v(Fy, E) is
invariant under [exp(At)] and, furthermore, that the flow is linear on the
fibres. Therefore the projective flow restricts in PE — PFi- to a bundle
flow. The Hilbert space splitting Fi- = @Dz, F; induces a vector bundle
splitting v(Fy, E) = @, v(Fk, Fi, @ F;) and on each of the components of
this splitting the flow is a scalar bundle flow exp((A; — Ag)It). This splitting
of [exp At] as sum of scalar bundle flows is the Projective Spectral Theorem
of section 18. The projective flow induced by a diagonalizable operator A
is explicitly described in terms of objects constructed from spectral data of
A, namely, in terms of eigenvalue differences and vector bundles constructed
from the eigenspaces. As a consequence the projective flow induced by a
self-adjoint operator is hyperbolic. See section 27.

17.-Bundle structures. Let F be a proper closed subspace of E so that
E = F & F* and consider the triple v(F, E) = (PE — PF*, q, PF). Here
q: PE—PF* — PF maps theline L' € PE—PF* to the line Qx(L') € PF.
It will be proved that v(F, E) is a vector bundle with typical fibre F+. This
will be done in two steps. First, vector space structures will be defined on
the fibres. Second, local trivializations will be constructed.

For the first step, note that the fiber of ¢ over L € PF is ¢~'(L) = P(L &
F*) — PF* and that it can be put into one-to-one correspondence with the
vector space Hom(L, F*) by sending a point L’ in the fiber to the unique
linear map with graph L’. This correspondence is natural and defines the
vector space structure on ¢7*(L). Since L is one-dimensional Hom(L, F*) is
isomorphic to F*+ and therefore F'*+ can be taken as the typical fiber. Note
that the zero of the vector space ¢7'(L) is L itself. The argument implies a
natural disjoint union decomposition of PE — PF*' as

PE—-PF*= () Hom(L,F") (34)

LePF
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For the second step, given L € PF let h : V = PE— PL* — Lt be a projec-
tive coordinate system centered at L. Note that ¢~'(PF — PL*) = PEPL*
and Lt = (L* N F) @ F+ ~ (L* N F) x F*, the isomorphism being canon-
ical. The following diagram then commutes and provides a trivialization of

v(F, E) over the open subset PF NV of the base space PF:

PE - PFY — (LN F)x Ft

ql L pr1 (35)
PFNV — L*NF

The horizontal arrows are restrictions of the projective local coordinate h.
A routine calculation shows that for these local trivializations the transition
functions are smooth and linear on fibers. This completes the construction
of the bundle v(F, E). It will be proved later that this is in fact the normal
bundle of PF in PE.

18.-Projective Spectral Theorem. One possible formulation of the ele-
mentary classical linear Spectral Theorem is the formula

exp(At) = éexp()\t) (36)

This expresses the linear flow as a superposition of scalar flows. For the pro-
jective flow let \; be an eigenvalue of A with eigenspace Fy and consider the
bundle v(Fy, E). Let F' = Fj, in diagram (35) and recall that the horizontal
arrows are restrictions of . Proposition 2 implies that [exp(At)] corresponds
under % with the linear flow exp((A — A;I)t). Because Fj- is A-invariant, it
follows that each fiber of v(Fy, E) is invariant under [exp(At)] and that the
projective flow is linear in these fibers.

The Hilbert space splitting Fi- = @, F; induces a splitting Hom(L, F-) =
@, Hom(L, F;) and this gives a bundle splitting

V(Fk,E)E@I/(Fk,Fk@Fj) . (37)
ik
Apply now Proposition 2 to A|(Fy & F;) to conclude that on each fiber of

v(Fy, F, @ F;) the projective flow [exp(At)] equals the scalar flow exp((A; —
Ae)It).
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Let I ; denote the identity bundle operator of v(Fy, Fy & F;). The previous
arguments prove

Theorem 1. Projective Spectral Theorem: On the total space PE —
PF} of the bundle v(F}, E)

[exp(At)] = @exp(()‘j — M) Iy jt) (38)

In this theorem the projective flow is expressed as a superposition of scalar
bundle flows. If E is finite dimensional and dim Fj, > 1 the bundle v(Fy, E)
is non-trivial, that is, not a product bundle and can be called a ‘generalized
Mobius strip’. Similarly, in the infinite dimensional case there seems to be
no natural way to present v(Fy, E) as a product bundle. The open dense set
PE — PFE}! is not contained in the domain of any natural coordinate system.
Therefore the formula in Theorem 1 can be called semi-global formula.

If the operator A is skew-adjoint, from formula (38) it is possible to determine
relative periods of trajectories, periodicity or cuasiperiodicity and invariant
tori.

If Ais a self-adjoint operator, from the semiglobal formula it can be concluded
that the projective flow is hyperbolic. This means that each connected com-
ponent of the critical point set is a smooth manifold and that over each fibre
of the normal bundle the flow is hyperbolic. For more on hyperbolicity of
the stationary manifolds PF; see section 27. The self-adjoint PST plays an
important role in Realism.

Note that if A is replaced by kA, £ > 0 then [exp(At)] and X4 become
replaced by [exp(kAt)] and kX4 respectively, and the eigenvalue differences
become k(A; — Ag). Therefore the trajectories of the projective flow become
reparametrized but otherwise remain the same.

19.-Energy. Assume in sections 19-30 that H : E — E satisfies the as-
sumptions made in section 14 and that furthermore the eigenvalues are real
and negative, —A\g < —A; < —Ay < --- < 0, with corresponding eigenspaces
Fy, Fy, Fs, . ... Equivalently, assume that H is self-adjoint and negative on
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the real or complex Hilbert space E.

The energy of H is, by definition, the smooth function ey : PE — R given

. (H. )
_ (HY, ) .
en(y] = D) (39)

an expression already considered in Part I of this paper and known as the
Rayleigh quotient of H.

Starting in the present section and up to section 28 the discussion will center
on the dynamics of the flow [exp(—xHt)] and its relation with the energy
observable ey. Particularly relevant will be to understand the behaviour
of the observable ey along the trajectories and near the fixed points of the
projective flow. The universal constant x = % > 0, h =Planck constant, gives
the rate at which the system outputs energy. From a physical perspective &
plays a most fundamental role.

20.-Projective fields and gradients. In section 14 it was stated that the
tangent space to PE at L € PE is canonically isomorphic to Hom(L, L*),
a fact to be proved in section 29. The inner product on the Hilbert space
E induces an inner product on Hom(L, L) as follows: Choose a unit vector

u € L and for #,0" € Hom(L, L*) define
(0,6 ) tom(r, L) = (0(u), 8" (w))p (40)

The value of (40) does not depend on the choice of u. If the scalars are
real this formula defines a Riemannian metric on PE. If the scalars are
complex it defines an Hermitian metric which is Kahler and has real part
equal to a Riemannian metric. Furthermore the Kahler structure defines a
symplectic structure. Hence, for any choice of scalars smooth functions on
PE have well-defined gradients and, for complex scalars, smooth functions
have well-defined Hamiltonian fields.

Lemma 1 (Gradient Lemma): The projective field associated to a self
adjoint operator equals the opposite of half the energy gradient:

K
X o = (_§)V€H
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Proof: The proof is in section 30.

Recall that, by definition, X_, 5 is the infinitesimal generator of the projec-
tive flow [exp(—xHt)], while ey has been defined as the Rayleigh quotient of
H. The Gradient Lemma implies that the critical points of e are the station-
ary states of [exp(—xHt)] and by Proposition 1 these are the one-dimensional
eigenspaces of H, that is, the elements of the set ;5o PF;. The stationary
value that ey assumes at points of Ly € PFy equals ey(Lg) = — . Calcula-
tion of the critical values of the energy is equivalent to finding the solutions
A of the eigenvalue problem H(t) = Atp. The minimum of ey is necessarily
a critical point, thus, the minimum is attained at points of PFy and the
minimum value is —Ag. If the multiplicity of —Ag is one then L is an iso-
lated critical point. Proposition 2 then implies that Ly is non-degenerated,
hence ey is a Morse function if and only if all eigenvalues are simple. If — Ay
has multiplicity greater than 1 the stationary set PF} is a non-degenerated
stationary manifold of positive dimension. Proposition 2 together with the
Gradient Lemma allow the calculation of the index of PF}y. This index equals
> j<k(dim F; — 1); this formula holds even if some F}’s are infinite dimen-
sional.

21.-Radiation. The following terminology about smooth curves in PFE
will be adopted: Let —oo < ty < t; < 400 and consider smooth curves
I': (to,t1) — PE. The curve I' radiates (resp. absorbs) if egyol' is strictly
decreasing (resp. strictly increasing) on (to,t1). Taking derivatives with
respect to t this is seen to be equivalent to the conditions

%(emr) — (Veu(T(1), () < 0 (41)
%(egor) — (Ven(T(1), (1)) > 0 (42)

for radiation and absorption respectively. Here the inner product is the one
given by formula (40) if the scalars are real, or the real part of (40) if they
are complex.

Consider now curves that are trajectories of the projective gradient flow
[exp(—kHt)], that is, let I'(¢t) = [exp(—xHt)]L. By the very definition of
generator of a flow and from the Gradient Lemma it follows that I'(¢) =
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X_ou(I(t)) = =5Ven(I'(t)). Therefore

d —K

pr en([exp(—kHt)|L) = TH Ven(lexp(kHto)|L|]* <0 (43)
t=to

and from condition (41), the energy function being the Rayleigh quotient,

one obtains the

Lemma 2 (Radiation Lemma): Non-constant trajectories of [exp(—rxHt)]
radiate.

If £ is a complex Hilbert space F with associated complex projective space
PE, from the way symplectic structures are defined on Kahler manifolds it
follows that the Hamiltonian vector field of the energy function %GH : PE —
R is —3Vey. The Gradient Lemma together with the linear dependency of
Xpg on H imply that Z'Vey = —i Xy = X_;y. This proves that X_;; is a
Hamiltonian field and is therefore energy conservative. The remarks made
in section 3 apply then in the general infinite dimensional case. A detailed
description of the trajectories of this Hamiltonian flow can be obtained from
the PST. For a presentation of standard quantum mechanics using X_;z see
[Glinther]. Compare also with [Gisin].

22.-Limit points and transition diagrams. The additional terminology
to be introduced in this section is a standard or natural one, but will be
explicitly stated for the sake of precision and clarity. It will be convenient to
work initially with general dynamical systems rather than with the special
case of projective systems. An introduction to dynamical systems in general,
including an extensive discussion of limit points, can be found in [Bhatia-
Szego).

A dynamical system with observable is a system that consists of a manifold
M, aflow Uy : M — M and a function e : M — R. These are the space of
states, the dynamics and the energy observable respectively.

Let Uy(z), —oo < t < 00, be a trajectory of the system. If the limits

alz) = limy__o U(z)
w(z) = limy_e Ui(x)

(44)
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exist they are the a-limit and w-limit, respectively, of the trajectory. These
limit points are always stationary, that is, Uy(a(z)) = a(z) and Uy(w(z)) =
w(x) for all ¢.

Let I' : (to,t1) = M, —oo <ty < t; < oo, be a smooth curve in the space of
states. The energy change along I is, by definition

ATl = tlir{l e(I'(t)) — thj{l e(T'(2)) (45)

provided the limits exist. If the curve I' radiates then AI' < 0 and if I’
absorbs then AI' > 0.

The notion @ and w limits generalize as follows: The curve I' comes from
Wy C M if for any neighborhood Ny of Wy there exists g, 79 > to, such that
I'(t) € Ng for all tg < t < 79. Similarly, I' goes to W if for any neighborhood
Ny of Wi there exists 7, 71 < t1, such that ['(¢) € N; for all 11 < t < ;.
This applies in particular if Wy and W) have unique elements, Wy = {zo}
and W = {1}, in which case it will be said that I' comes from x4 and goes to
zy. If tg = —o0 and t; = oo then for any x = I'(¢), a(x) = zg and w(z) = z;.

For projective gradient systems the above limits can be calculated explicitly.
For each eigenspace Fj let Qp, : E — E be the orthogonal projection over
Fj. 1f ¢; = QF;(¢) then, because the eigenspaces span E, ¥ = 3222 ;.
For v¢; # 0 define the j-th projective component of L as L; = [¢,]; if
¥; = 0 then then the j-th projective component is not defined. If k is
the smallest of the indices j such that the j-th projective component of
L is defined it will be proved below in the Transition Lemma that the w-
limit of L equals w(L) = Lg. Obviously, if the energy w-limit is defined as
€4 (L) = limy_oo e ([exp(—rHt)|L) then e§ (L) = eg(Ly) = —Ag.

In case m is the largest index j such that the j-th projective component is
defined then the a-limit of L exists and is o(L) = L,,. Similarly, the energy
a-limit is e} (L) = limy_o eg([exp(—cHt)|L) = ey(Lym) = —Am. In case
¥; # 0 for infinitely many indices j the a-limit does not exist. But the
energy a-limit still exists. This follows from the fact that, as a function of ¢,
the energy eglexp(—xHt)|L of the trajectory is bounded above by 0 but, for
t — —oo, this function takes values larger than any of the —\;’s for which

¥; # 0. Hence (L) = 0.
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Lemma 3 (Transition Lemma): Under the projective flow [exp(kHt)]
for any state L € PE the w-limit and energy w-limit are w(L) = Ly and
GEL = _)\k-

Proof: Define F;, = @©F}, with the sum taken over the j’s such that the
projective component L; is defined. This is the smallest H-invariant subspace
of E that contains L. Then L € PFj, — P(w(L)') = total space of the vector
bundle v(w(L), F). The point L belongs to the fiber over ¢(L) = Qur)(L) =
w(L). Apply now Theorem 1 to the restriction A = —xH|Fy. Because all
exponents K(A; — Ag) = (kA +kAx) in (23) are negative w(L) equals the zero
of the fiber over w(L), namely, equals w(L) itself. Then €% L = —\;, QED.

The energy w-limit is related to the quantum mechanical transition proba-
bilities as follows. If the j-th projective component of L is defined, let

(0, ¥) (¥5, ¢5)

and let p; = 0 whenever ¢; = 0. Thus, if py # 0 and p; = 0 for all j < k then
ey L = —Ag. Therefore, the energy w-limit is given by the smallest index &

pi =pi(L) =

with non-zero transition probability pr # 0. A more detailed analysis would
show that if p; is large then the trajectory of L is close to PFj.

Corollary 1: For —\; < —\,, there are states L € PE with a-limit in PF,,
and w-limit in PF},.

Proof: All states in P(F&® Fry1©®- @ F,,) which are not in PFUP(Fiy16
-+ & F,,) have this property, QED.

Consider again a general dynamical system with observable. A state x € M
is a stationary state and the energy value —\ = e(x) is a stationary energy

level if d((U(e)))
+ =0 (47)

t=0
that is, if the derivative of e along the flow is zero at x. The stationary set
S C M is the collection of all stationary states and the stationary value set
is the set C = e(S) C R of all the values taken by the energy function at
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stationary states. For a stationary energy level —\ let S_\ = {z € S|e(z) =

—A} = ¢ (=A) N S so that = [J S_\, the union being disjoint. In case
_xeC

S_ 1s a submanifold of M it will be called a stationary manifold. Obviously,

for Hamiltonian dynamical systems the stationary value set is a continuum.
See section 24 below.

Consider stationary states xx € S_z,, 2, € S_»,,. The curve I is a transition

from z,, to zy if it comes from z,, and goes to xy. The notation z,, LN Tk
indicates that there exists at least one flow trajectory I'(¢t) = U;(x) which is a
transition from x,, to xy, in other words, that there exists at least one x € M
such that U;(z) has a-limit z,,, and and w-limit z;. Similarly, since all states

in the stationary set S_»; have energy —A; the notation —A,, LN Ar will be
used to indicate that there exists at least one trajectory I'(¢) = U;(«) that
comes from the stationary set S_, , and goes to the stationary set S_j,.

The transition diagram of a dynamical system with observable consists of
horizontal lines and vertical arrows and is constructed as follows: For each
stationary level —\ draw a horizontal line at height —\, to be called line
—A. If at least one trajectory of U; is a transition from stationary set S_, ,

to stationary set S_,,, that is, if —\,, N — Ak, then draw a vertical arrow
from line —A\,,, to line —A. This completes the construction. The transition
diagram gives a conveniently simplified picture of the dynamical behavior of
the observable e along the trajectories of the flow U,.

23.-Transition diagrams for projective gradients. For a projective
system with space of states PE, gradient flow [exp(—xHt)] and energy ey
the transition diagram is shown in Figure 1. For the specific case of the
hydrogen atom the constant a appearing in the figure equals 13.6 electron-
volts. The continuous energy observable ef changes in time according how
states L € PE evolve under the continuous and deterministic dynamics
specified by the projective gradient evolution [exp(—xHt)]. The diagram
clearly shows that this evolution produces discretization of energy levels, in
accordance with known physical properties of atoms. See the discussion of
GE.4 in section 9 and see Corollary 1 in section 22 above for the existence
of the transitions.
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—a
A= —
. (n+1)2 :
. —a .
—)\2 == ? Y
-\ ;—2@ Yy
_)\0 = —a YYY

Figure 1. Transition diagram for gradient system PE, X_.g,eq.

For a given operator H the transition diagram of the system with flow
[exp(—kHt)] and energy observable ey is independent of x > 0. The role
of k is to determine the rate at which the system radiates energy. Only the
speeds of trajectories are affected by x. In other words, the curve I'(¢) is a
trajectory of [exp(H¢t)] if and only if I'(kt) is a trajectory of [exp(—xH?)].

24.-Transition diagrams for projective Hamiltonians. Consider now
the projective system with Hamiltonian flow [exp(—:Ht)] and energy ep.



Crespin: PDS&R 36

In this case the energy ey is constant along trajectories and therefore all
the values taken by the function ey, that is, all elements of the interval
[—Ao,0), are stationary energy levels. These values fill a continuum and if
stationary lines were drawn they would fill a solid rectangle. In contrast with
gradients, Hamiltonians have an overabundance of stationary levels. Also,
for Hamiltonians there are no transitions between different stationary levels
because trajectories stay in constant energy hypersurfaces. Hamiltonian sys-
tems, again in contrast with gradients and in complete disagreement with
the behaviour of atoms, have transition diagrams devoid of arrows.

The previous analysis and discussion confirm that the projective gradient
systems with space of states PE, dynamics defined by the flow [exp(—xH1)]
and energy observable ey, is a good model for atomic systems. They consti-
tute much more reasonable theoretical models than the Hamiltonian systems
proposed by quantism. With the gradient evolution proposed by Realism
the discretization of stationary energy levels and the existence of transi-
tions are consequence of the dynamics. On the contrary, with the quantum
Hamiltonian evolution the discretization of stationary energy levels and the
transitions have to be postulated and contradict the dynamics.

25.-Energy packets. Energy emission by a projective gradient system will
be analyzed now in more detail. The energy radiated up to time t by the
trajectory I'(t) = [exp(—xHt)]L with initial state L = L) € PE is

G(t) = Gr(t) = —en(lexp(—rH)]L) + ¢ (L) (48)

Thus, G(t) > 0 and the conventional term e%;(L) in the formula ensures that

At each instant ¢ the energy output rate of the trajectory of L is by definition
the derivative ¢(t) = gr(t) = G’ (t) of the radiated energy. This derivative
will also be called the energy packet of the trajectory. The integral of the
energy packet equals, up to sign, the energy change along the trajectory

/ " g(t)dt = lim G(t) — lim G(1) (49)

— 00

A calculation gives

9(t) = 2(ess — &) (lexp(kH1)]L) (50)
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and also

9(t) = S| Ven(lexp(—rH)|L)]? (51)

Therefore it is natural to define the radiance p(L) of a state L as

p(L) = gr(0)
= 2r(ey> —e3)L (52)
= lIVen(L)|I*

the point being that if L) = [exp(—xHty)|L then p(L1) = g1,(0) = gr(t1)
meaning that in projective gradient systems the energy output rate is an
explicit function of state.

The right hand term in equation (51) is just the middle term in formula (43)
with reversed sign. But since w(L) = Ly=stationary state, equation (51)
implies that

tlim g(t)=0 (53)
Also, if a(L) = L,
tli{n g(t)=0 (54)

This last condition holds in all cases, even if the a-limit of L does not exist.

More generally, from continuity arguments and from formula (52) it follows
that ¢g(t) becomes small for values of ¢ such that [exp(kHt)]L is close to a
stationary state. Therefore, if L has a-limit in PF,, and w-limit in PF}, the
energy output rate g(¢) can be expected to have at most m — k local maxima
and m — k — 1 local minima, depending on how near to PF;.k < j < m,
the trajectory of L passes. If L is not stationary and belongs to P(Fy, & F,;,)
then ¢(¢) has a unique local maximum.

The energy output rate g(¢t) = G'(t) has been defined as a function of time
t. It can also be considered as a time dependent energy density, namely, as
a differential form ¢(¢) dt = dG = G'(t) dt. The physical assumption can be
made now that the energy radiated propagates in space along an axis with
constant direction and speed ¢. The differential form can be transformed to
distance coordinate along an axis as follows. Let z be the distance along the
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propagation axis so that = ¢t and dx = c¢dt. Defining the energy density
in space variable x as

fz) = —g(-2) (55)

it follows that
F(a) de = g(t) d (56)

If (O = ¢t then f(2(?)) is the total energy contained in the (2-dimensional)
plane perpendicular to the propagation axis at the point z(®) and time t,.
The function f(x) is the energy packet in axis variable x.

26.-Energy absorption. Let I': (tg,t1) — PE be a smooth curve. Define
the driving speed ( of I', against X_.z) as

D(t) = I"(t) = X_or (T(1)) (57)

D : (to,t1) — TPE is a vector field along I' and I'' = X_,g + D. Hence
D = 0 if and only if I' is a trajectory of Xyg. D(t) is zero at the end if
limy—s, D(t) = 0. The driving speed provides a special argument to justify
discretization of absorbed energy. It has more tautological than physical
content.

Lemma 4 (Absorption Lemma): Assume that ['(t) absorbs, goes to the
set eg' (=) = {Llen(L) = =i} and that the driving speed is zero at the
end. Then I' goes to PF}.

Proof: It suffices to prove that lim;—;, X_.g(I'(¢)) = 0, but this is a conse-
quence of

0 < limyy (X_em (T(1)), X_xu(L(2)))
= limy_y (I"(¢) — D(t), X_xu(L'(t)))
= limy_, (I"(¢), X_xu(L'(2))) (58)
= I {0, 5 Ven(T0)

The first inequality follows from the positivity of the inner product. Next, the
first equality follows from the definition of D(t), the second equality because
D(t) is zero at the end, the third equality from the Gradient Lemma and the
last inequality is a consequence of equation (37). QED.
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If interpreted physically this result tells that when the energy packet ab-
sorbed has the correct total energy and results in a trajectory with driving
speed 0 at the end then a stationary state is reached. Up to a point, this
argument justifies the existence of absorption spectra. The hypothesis that
the driving speed is zero at the end depends on the interaction between the
incoming energy packet and the system. A detailed physical description of
the interaction requires, as said above, to set up and study a system in T*PE.
This will be done in a future paper.

27.-Stable manifolds and hyperbolicity. For a general discussion of sta-
ble and unstable manifolds and hyperbolicity of critical points and manifolds
see [Abraham]. Also useful is [Bhatia-Szego]. Consider again the projective
flow [exp(—xHt)]. If C C PE is a set of critical points the stable manifold
of C is

M*(C)={Ljw(L) € C} (59)
and the unstable manifold is
M*(C)=A{Lla(L) € C} (60)
Let
Fk_ = ®j>k Fj (61)

Ff = Dj<k Fj
so that Ft = F_ & F. A point L € PE has w(L) € PFy, if and only if
L € P(F,&F;)—PF, and from the Transition Lemma it follows that this is
the stable manifold of PFy under [exp(—xHt)]. Reversing signs (—xH to kH)
the same reasoning gives that the unstable manifold is P(F}, & F}f) — PE}}.
This proves the

Lemma 5 (Saddle Manifold Lemma): The stable and unstable manifolds
of PFy, under [exp(—xHt)| are

M*(PFy)=P(F, & F,)— PF, (62)
and

M*(PF,) = P(F, & F}) — PF} (63)

This Lemma is related to the hyperbolicity of the stationary manifold PF}
and tells exactly what the stable and unstable manifold of this stationary
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manifold are. Note the relation with the classical ‘saddle surface’ that repre-
sents hyperbolic critical points of real valued functions of two variables. This
can be further elaborated in terms of the second derivative of the energy

ey or, equivalently, in terms of the derivative of the projective vector field
X—K?H = —%VGH.

Let F be a subspace of E with orthogonal complement in E equal to F*, and
consider a one-dimensional subspace L of F' having orthogonal complement
in F equal to L+ N F. Then the orthogonal complement of L in E splits as
Lt = (L* N F)® F*. If this is applied together with formula (31) then the
tangent space to PE at L splits as T,PE = Hom(L,L*) = Hom(L, L+ N
F)& Hom(L, FL) ~T,PF&TLP(L& FL). This relation holds for all L €
PF. Substituting in equation (40) it can be proved that this direct sum of
tangent spaces is actually an orthogonal sum. On the other hand, according
to formula (34) Upepp Hom(L, F*) identifies canonically with PE — PF+ =
total space of v(F, E). It follows that TPE|PF = 1PF @ v(F, E). Therefore
v(F, E) is the normal bundle of PF in PE.

Let now F = F. The sum Fi- = F @ Fj gives
TPE|PF, = v(Fy, F) & TPF, & v(Fy, Fy) (64)
Consider then the total space TP E of the tangent bundle 7PE. The diagram
PE =¥ TPE % PE (65)

can be differentiated and the result is a new diagram with objects the total
spaces of the tangent bundles of the corresponding manifolds and with arrows
the bundle derivatives of the respective maps, as shown immediately below

rPE 25" rT7PE 1% TPE (66)

The states belonging to the stationary manifold PF} are zeros of the projec-
tive vector field X_,p, therefore the composition T'goT X_.py of derivatives
is a well-defined bundle endomorphism B on the restriction 7 PE|PF}, of the
tangent bundle 7 PE to the stationary manifold PFj. According to the proof
of the Projective Spectral Theorem for Ly € F} the vector field X_ .y is linear
on the fibers of TPE|PFy, hence, X_, g has derivative equal to that linear
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map. Hence the restriction By, of B to the fibre T, PE = Hom(Ly, L) =
Li equals the linear endomorphism —x(H — A\ I) : Lif — Lj-. In particular
the eigenvalues of By, are independent of Ly € PFj, and formula (64) is
a splitting by subbundles that are invariant under the projective flow. The
eigenvalues of B are negative, zero and positive in v(Fg, Fy ), 7PF, and
v(Fy, FiT) respectively, being of the form x\; — kAg. Therefore formula (64)
is actually a hyperbolic splitting of 7PE along PFy. This proves that the
critical manifolds are hyperbolic.

This hyperbolicity of X_.pg at PFg plays an key role in Realism. It is
implicit in the Perturbation Lemma and Saddle Manifold Lemma of the next
section. Hyperbolicity explains the spontaneous transition phenomena of
microscopic physical systems. The apparent randomness usually associated
to these transitions is explained by Realism as the deterministic evolution
a of perturbed stationary state. The almost stationary states evolve with
sensitive dependency on initial conditions. The sensitivity is due to the
hyperbolic nature of the projective flow near the stationary manifolds.

28.-Perturbations. Perturbation theory is a classical topic with numer-
ous ramifications. Again, [Abraham] is a good reference. The Perturbation
Lemma below tells how gradient projective systems behave when a stationary
state is perturbed. The process under discussion consists of an initial sta-
tionary state L, which is perturbed to a nearby state L,, and then evolves
as a trajectory [eXp(—fth)]zm of the projective gradient system. For exam-
ple, it can be concluded from the Perturbation Lemma that the total energy
change is always an eigenvalue difference A,, — A\;. The techniques to be used

are standard ones in Morse Theory.

Let
Wm = 6;11[—)\0, _)\m—l—l) = {L € PE|€H(L) < )\m—}—l} (67)

This set is open in PE, contains PF} for all 7 < m 4+ 1, and because of the
Radiation Lemma is a set invariant under the projective flow [exp(—xHt)].

Consider a neighborhood N,, of L,, € PF,, such that N,, C W,,. Define

N,,={L € N,, — PF,|w(L) € PF,} (68)

m

N° = N,, N PF,, (69)
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Nt ={L € N, |w(L) € PF,.} (70)

Then N,, = N, UN2 U N} is a disjoint union. Note that N} = ) if and
only if m = 0.

Lemma 6 (Perturbation Lemma): States L,, close enough to PF,, satisfy
one and only one of the following conditions:
a) L,, is in PF,,.
b) im s not i PF,, and has enerqy w-limait e%zm = —\..
¢) im s not i PF,, and has enerqy w-limait e%zm = —\ for some
k<m.

Proof: This follows from the definitions of Wy, of energy w-limit and from
the Transition Lemma, QED.

29.-Canonical bundles and tangent bundle to PE. In [Milnor-Stasheft]
the equivalence of the tangent bundle 7PE with the bundle Hom(~y,~1) is
proved for finite dimensions. The proof is presented here applies in the infinite
dimensional case. The result is a preliminary for the Gradient Lemma.

The canonical bundle v = ~vg over PE is the line bundle with total space
Tvy={(L,¥)e PExE|¢YeL} (71)

and projection ¢,(L,v) = L. Each Ly = [¢po] € PE — {0} defines a local
trivialization of 7 over Vy = PE — P Lg given by the diagram where IAC(L, ) =
(L,Qr,(¢). The maps pr;, j = 1,2, with domain the product V5 x Lg are
natural projections onto the first and second factor respectively.

The orthogonal canonical bundle v+ = 44 over PE has fibers which are
hyperplanes of E and has total space

Ty*"={(L,n) € PE x E|nLL}. (72)
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The projection is ¢,+(L,n) = L. Local trivializations over V; are defined by

kg
i) — VoxLg

qyr N /P (73)
Vo
with ];‘é‘(L,T]) = (L,Qre(n)).

The vector bundle 7 = Hom(y,vt) over PE has fiber Hom(L, L") over
L € PE, hence total space

T,= |J Hom(L,L") (74)

LePE

and projection ¢, : T, — PFE that sends points in Hom(L, L*) to L. Local
trivializations over open affine sets V4 are provided by

(V) o v crd
(:ZT \ x/ prl (75)

Vo

with fAcOL(L,n = (L,Qr,(n)). The top arrow is defined as follows: for 6 €
i

%0(9) = (L7 ]%S_OHOPTQO[%(J_l(La 17/)0)) (76)

Here kg and Z%OL are the corresponding local trivializations of the canonical
and orthogonal canonical bundles.

It will now be verified that the tangent bundle to PE is canonically isomor-
phic to the bundle 7 = Hom(~y, v ) above. To verify this, let 1,4, € E—{0}
and consider the commutative diagram

Vi x Ly Vi x Lt
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Bt xids N () o/ N\ohoxid
Ly x Ly «— ¢;' (Vi) «— ¢' (VonVi) — ¢ ' (Vo) — Ly x Ly (77)
pri | ql ql ql pri |

ho
—

h—l
L & WV — V%W — W L

The lower edges of the diagram triangles are defined by the condition of that
the triangles should be commutative, and the remaining unnamed arrows are
inclusions. The first two arrows in the top horizontal line of the diagram,

suitably restricted, have inverses which composed with the two last arrows
in the same line define a map @ : hy (Vo N V1) x L — ho(Vo N V1) x L and
define also a commutative diagram

(Vo Vi) x LE 25 ho(Vo N VA) x L

pril pril (78)
hi(VoNnVy) —  ho(VoNW)

A routine calculation can now be performed to show that

®(n,n') = (hoohy* (1), D(hoohi')(n) - 1') (79)

It has therefore been proved that when expressed in the projective coordinate
system the local trivializations of Hom(7y,y*) have transition functions given
by the derivative of hgeh['. But these are the transition functions of the
tangent bundle and this implies that 7PE = 7 = Hom(vy,y%).

30.-Proof of the Gradient Lemma. Smooth maps f : PE — R have
bundle derivatives that are bundle maps

TPEQRXR

7 | L pr (80)
PE i) R
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The tangent bundle 7PE has just been identified with Hom(vy,~v%). Un-
der this identification the map T'f is given locally as follows: For 6 €
Hom(L, L) C (Vo)

Tf(6) = (f(L), D(fohg")(ho(L)) - pracho(6)) - (81)

Let ¢ € L € PE and consider the vector field defined on PE by

Xa(L)Y = Qu(A(Y)) (82)

Here X4 is considered as a section of the bundle Hom(~,y*). It is immediate
that the zeros of X4 are the one-dimensional eigenspaces of A. Over a
coordinate system centered at Ly € PFj the local trivialization of the tangent
bundle defined by formula (55) (with ¥g = ¢, € Ly € PFy) transforms X4
into the linear vector field (A — AgI) : L — Li-. This is an easy calculation.
Because the eigenvectors of A span E. projective coordinate systems centered
at critical points cover PE. From Propositions 2 and 3 it follows then that
X4 equals over all of PE to the infinitesimal generator of the flow [exp(At)]
defined in (13). This completes the proof of (19).

Because X4 depends linearly on A and ey is linear in H, it suffices to prove
(26) in the case k = 1. Consider first real scalars, and let Ly € PE, ¢y € Lg
a unit vector. If Tey : Hom(L, LL) — R is the bundle derivative of ey at
Ly, the Gradient Lemma is equivalent to the following relations:

<X—H(L0)70>Hom(L0,Lol) = %TGH(LO)‘H

2(Qrs H(vo),0(v0))s = Ten(Lo)-0, 6 € Hom(Lo, LE) . (83)

The last term can be calculated using the projective coordinate system hg :
Vo — Lg defined by g and centered at Lo. Note that Ly is not assumed to
be an eigenvector of H. Applying now (39)

Ten(Lo)(8) = (en(Lo), D(erohg")(ho(Lo)) - praho(8)) - (84)
On the other hand,

ho(Lo) = 0

praho(8) = Qri(8(t0)) (85)
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and
erchy ' (n) = (H(o + 1), %o + 1)/ {tho + 1,0 + 1) - (86)

Elementary computations can then be performed to conclude that

D(enohg')(0) - (Qre(0(v0)) = 2(to, Qs (8(t0)))

= 2<QLOL('€/)0)7 6(vbo)) - (87)

This completes the proof in the real case. For complex Hilbert spaces the
real part of equation (35) is used and the proof reduces to the real case.

31.-Real scalars vs. complex scalars. In Realism wave functions
should be real valued functions. This makes E a real vector space and PE a
real projective space. This choice of scalars is necesary to make angular mo-
mentum correspond to an actual rotation of the wave function. The dynamics
of rotations is defined by means of a skew-adjoint operator K that commutes
with the self adjoint Hamiltonian H and is added to H to define rotational
dynamics. A real normal operator H + K results. If complex functions are
used then stationary wave functions in the eigenspaces F} differing in a space
rotation are equal except for a complex phase of the form €. Therefore at
the level of the complex projective space PE they become identical states.
The degree of freedom necessary to describe wave rotation is lost. In con-
sequence, quantism requires Spin matrices to refer in an extremely akward
way to rotational phenomena. The quantum Spin theory is a complicated
and unclear description of a basic microscopic physical phenomenon: The
physical rotation of waves.

For example, according to Realism, Zeeman effect is physically a phenomenon
of wave rotation described by a flow [exp(—(H + K)t)] on real projective
space, with H=self-adjoint Hamiltonian and K =rotation operator, both de-
fined on the real Hilbert space L§; (R?) of real valued, square integrable func-
tions defined on R®. The dynamics of this flow is more involved than the
one given in Theorem 1 since it deals simultaneously with gradient evolution
and rotations of wave functions. A projective spectral theorem for this flow
can be found in [3] or [4].
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