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A Primer on Perceptrons

The basic constructions and operations of perceptron networks will be formu-
lated here in terms of matrices, providing a viewpoint close to conventional
matrix algebra.
Rudiments of sets, functions, vectors and matrices are the only requisites to
read this primer.
Perceptrons were introduced by Warren McCulloch and Walter Pitts in 1943.
For a glimpse at the vast literature on the subject, perform a Web search.

General definitions

Vectors
A vector, or n-vector, x = (x1, . . . , xn) is an element of n-dimensional Eu-

clidean space, x ∈ Rn.

Binary vectors
A binary n-vector is a vector b = (b1, . . . , bn) with all its coordinates binary,

bi = 1 or bi = 0.

Forms
A form, or single output form in n-variables, is a function f : Rn → R given

by the formula
f(x) = f(x1, . . . , xn)

= w0 +
∑n

i=1 wi xi

The coefficients wi are called weights. Weight w0 is the bias and can take on
any value but at least one of the remaining weights wi, i = 1, . . . , n, must be
non-zero; this is equivalent to f being a non-constant function. The terms ‘n-
variables’ and ‘n-inputs’ are used interchangeably.

m-forms
An m-form, or (multiple) m-output form in n-variables is a product F =

f1 × · · · × fm : Rn → Rm of m single output forms fj : Rn → R, j = 1, . . . ,m,
that is

F (x) = (f1(x), . . . , fm(x))

The form F can also be written as a composition F = τ ◦ T where T : Rn → Rm

is the linear transformation T = F − F (0) and τ : Rm → Rm is translation by
F (0), τ(y) = y + F (0). Because each fj is non-constant the components of T
are non-zero linear functions.

Heaviside function
The Heaviside function h : R → {1, 0} ⊆ R is defined as

h(t) =
{

1 if t ≥ 0
0 if t < 0
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m-dimensional Heaviside function
The m-dimensional Heaviside function hm : Rm → {1, 0}m ⊆ Rm consists in

applying h to components: For y = (y1, . . . , ym) ∈ Rm

hm(y) = h(y1)×
m
^· · · ×h(ym)

Perceptrons

Units
A perceptron unit with n inputs is a function p : Rn → {1, 0} equal to the

composition of Heaviside function h with a form f in n variables

p = h ◦ f

Here the small circle ◦ indicates the usual composition of functions. This can
also be written as p(x) = h(f(x)).

Layers
A perceptron layer with n inputs and m outputs is a function L : Rn →

{1, 0}m ⊆ Rm equal to the product of m perceptron units, pj = h ◦ fj : Rn →
{1, 0} ⊆ R, j = 1, . . . ,m, each unit being in n variables

L(x) = p1(x)× · · · × pm(x)
= h ◦ f1(x)× · · · × h ◦ fm(x)

Alternatively, L equals the composition L = hm ◦ F of the m-output form
F = f1 × · · · × fm : Rn → Rm with the m-dimensional Heaviside function.

Networks
A perceptron network with k layers, n0 inputs and nk outputs is a function

P = Rn0 → {1, 0}nk ⊆ Rnk equal to the composition of k perceptron layers. In
more detail, P is a k-layer perceptron network if there exist perceptron layers
Li : Rni−1 → {1, 0}ni ⊆ Rni , i = 1, . . . , k, the range of each contained in the
domain of the next, such that

P = Lk
◦ · · · ◦ L1

Network P can also be written as

P (x) = Lk(Lk−1(· · · (L1(x)) · · ·))

Or inductively, let y1 = L1(x), yj+1 = Lj+1(yj), j ≥ 1, then P (x) = yk.
The expression of P as a composition of layers is not unique. It can be proved in
general that, for all k > 0, any k-layer perceptron network with n0 inputs and
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nk outputs, say P = Lk
◦ · · · ◦ L1 can be expressed as a composition of three

layers, P = L′
3
◦ L′

2
◦ L′

1. Additionally, one can take L′
1 = L1.

Representation and evaluation
According to the previous definitions units, layers and networks are real val-
ued functions of several variables. These objects and the procedures for their
effective calculation can be represented numerically in terms of matrices and
Heaviside functions. Details follow.

Bordered products
The bordered product of an m× (n+1) matrix and an n× 1 matrix, denoted

with an asterisk ∗ as shown below, is by definition an m× 1 matrix defined by
the expression

a1 0 a1 1 · · · a1 n

a2 0 a2 1 · · · a2 n

...
...

...
am 0 am 1 · · · am n

 ∗

 x1

...
xn

 =


a1 0 +

∑n
i=1 a1 i xi

a2 0 +
∑n

i=1 a2 i xi

...
am 0 +

∑n
i=1 am i xi


Bordered products are commonly used for non-homogeneous linear equations
and to represent non-homogeneous linear transformations. The term ‘bordered’
refers to the left border, or first column, of the matrix. These are independent
terms in the formulas.

Vectors and matrices
A n-vector x ∈ Rn is represented as an n × 1, or single column height n

matrix with entries equal to the coordinates

x =

 x1

...
xn


Forms and matrices

A single output form f in n variables is represented as an 1 × (n + 1), or
single row, matrix with entries equal to the weights

f = [w0 w1 · · · wn]

Values of forms
The value of a single output form f in n variables, on an n-vector x, can

be calculated as the bordered product of the respective single row and single
column matrices

f(x) = [w0 w1 · · · wn] ∗

 x1

...
xn


= w0 +

∑n
i=1 wi xi
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m-forms and matrices
An m-output form in n variables F = f1× · · · ×fm, where fj = [wj 0 wj 1 . . . wj n],

j = 1, . . . ,m, is to be represented by a corresponding m× (n+1) matrix having
entries equal to the weights

F =


w1 0 w1 1 · · · w1 n

w2 0 w2 1 · · · w2 n

...
...

...
wm 0 wm 1 · · · wm n


Values of m-forms

The value of an m-output form F in n variables on an n-vector x can be
calculated as the bordered product of the respective matrices

F (x) =


w1 0 w1 1 · · · w1 n

w2 0 w2 1 · · · w2 n

...
...

...
wm 0 wm 1 · · · wm n

 ∗

 x1

...
xn



=


w1 0 +

∑n
i=1 w1 i xi

w2 0 +
∑n

i=1 w2 i xi

...
wm 0 +

∑n
i=1 wm i xi


Heaviside transform and symbol

Will use h as an exponent to indicate composition on the left with a Heaviside
function. Thus, if X is a set and G : X → Rm is a function then, by definition,

Gh = hm ◦ G

Function Gh : X → {1, 0}m is the Heaviside transform of G. In particular if
m = 1 then Gh = h ◦ G.
The correspondence G → Gh is a non-linear operator transforming m-vector
valued functions G into binary m-vector valued functions Gh.
It will be convenient to use the term Heaviside symbol for the exponent h.

Units and matrices
A perceptron unit in n variables, p = fh, will be represented by the 1×(n+1)

matrix of f and Heaviside symbol

p = h ◦ f
= fh

= [w0 w1 . . . wn]h

Values of Perceptron Units
The value of a perceptron unit p = h ◦ f in n variables, on an n-vector x,
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can be expressed in terms of the Heaviside function and a bordered product

p(x) = [w0 w1 . . . , wn]h


 x1

...
xn




= h

[w0 w1 . . . wn] ∗

 x1

...
xn




= h(w0 +
∑n

i=1 wi xi)

Layers and matrices
An m-output perceptron layer L = hm ◦ F in n variables is represented by

the m× (n + 1) matrix of F affected by Heaviside symbol

L =


w1 0 w1 1 · · · w1 n

w2 0 w2 1 · · · w2 n

...
...

...
wm 0 wm 1 · · · wm n


h

Values of perceptron layers
The value of an m-output perceptron layer L = hm ◦ F in n variables, on

an n-vector x, is a binary vector that can be expressed in terms of bordered
products of matrices and Heaviside function:

L(x) =


w1 0 w1 1 · · · w1 n

w2 0 w2 1 · · · w2 n

...
...

...
wm 0 wm 1 · · · wm n


h 

 x1

...
xn




= hm




w1 0 w1 1 · · · w1 n

w2 0 w2 1 · · · w2 n

...
...

...
wm 0 wm 1 · · · wm n

 ∗

 x1

...
xn




Perceptron Networks and matrices
A k-layer, n0-input, nk-output perceptron network P = Lk

◦ · · · ◦ L1 with

Lj =


w

(j)
1 0 w

(j)
1 1 · · · w

(j)
1 nj−1

w
(j)
2 0 w

(j)
2 1 · · · w

(j)
2 nj−1

...
...

...
w

(j)
nj 0 w

(j)
nj 1 · · · w

(j)
nj nj−1


h

j = 1, . . . , k
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can be represented in terms of the matrices corresponding to the layers as

P =


w

(k)
1 0 w

(k)
1 1 · · · w

(k)
1 nk−1

w
(k)
2 0 w

(k)
2 1 · · · w

(k)
2 nk−1

...
...

...
w

(k)
nk 0 w

(k)
nk 1 · · · w

(k)
nk nk−1


h

◦ · · · ◦


w

(1)
1 0 w

(1)
1 1 · · · w

(1)
1 n0

w
(1)
2 0 w

(1)
2 1 · · · w

(1)
2 n0

...
...

...
w

(1)
n1 0 w

(1)
n1 1 · · · w

(1)
n1 n0


h

where the small circles ◦ indicate composition of functions.

Values of perceptron networks
The value of the above perceptron network on an n0-vector x can be ex-

pressed in terms of bordered products of matrices and Heaviside functions as

P (x) =


w

(k)
1 0 w

(k)
1 1 · · · w

(k)
1 nk−1

w
(k)
2 0 w

(k)
2 1 · · · w

(k)
2 nk−1

...
...

...
w

(k)
nk 0 w

(k)
nk 1 · · · w

(k)
nk nk−1


h

· · ·



w

(1)
1 0 w

(1)
1 1 · · · w

(1)
1 n0

w
(1)
2 0 w

(1)
2 1 · · · w

(1)
2 n0

...
...

...
w

(1)
n1 0 w

(1)
n1 1 · · · w

(1)
n1 n0


h  x1

...
xn0


 · · ·


For an equivalent inductive formulation let


y
(1)
1
...

y
(1)
n1

 =


w

(1)
1 0 w

(1)
1 1 · · · w

(1)
1 n0

w
(1)
2 0 w

(1)
2 1 · · · w

(1)
2 n0

...
...

...
w

(1)
n1 0 w

(1)
n1 1 · · · w

(1)
n1 n0


h  x1

...
xn0


and for j ≥ 1 take


y
(j+1)
1
...

y
(j+1)
nj+1

 =


w

(j+1)
1 0 w

(j+1)
1 1 · · · w

(j+1)
1 nj

w
(j+1)
2 0 w

(j+1)
2 1 · · · w

(j+1)
2 nj

...
...

...
w

(j+1)
nj+1 0 w

(j+1)
nj+1 1 · · · w

(j+1)
nj+1 nj


h 

y
(j)
1
...

y
(j)
nj


which is always a binary vector. Then

P (x) =


y
(k)
1
...

y
(k)
nk


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Variants

Sigmoids
The sigmoid or logistic function is the function σ : R → (0, 1) given by

σ(y) =
1

1 + e−y

The m-dimensional sigmoid is then σm(y1, . . . , ym) = (σ(y1), . . . , σ(ym)).
Replace now Heaviside function h with the sigmoid σ to obtain the sigmoid
transform, G → σm ◦ G, with corresponding sigmoid symbol, Gσ = σm ◦ G as
well as sigmoid units in n variables s : Rn → (0, 1),

s = σ ◦ f
= fσ

m-output sigmoid layers L : Rn → (0, 1)m,

L = σm ◦ F
= Fσ

and k-layer sigmoid networks S : Rn0 → (0, 1)nk ,

S = (σnk ◦ Fk) ◦ · · · ◦ (σn1 ◦ F1)
= Fσ

k
◦ · · · ◦ Fσ

1

= Lk
◦ · · · ◦ L1

Similarly to perceptrons, all these functions and their values can be represented
by means of matrices, with sigmoid symbols replacing Heaviside symbols.
Sigmoid networks are differentiable functions of their weights.
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