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CHAPTER O

INTRODUCTION

This monograph proposes a continuous and deterministic wave theory of
atoms. The new theory is called realism and owes much to the one originally
introduced by the physicist Erwin Schrodinger in 1924. Physical intuition
and mathematical skill led him to formulate the quantization phenomenon
as an eigenvalue problem; his insatisfaction with the path taken by wave
mechanics shortly after he made his contribution is well known. We belive
he was right. Similarly unsatisfied were the previous founding contributors
Max Plank, Albert Einstein and Louis de Broglie. Our labour will be more
than rewarded if their coherent, logical, elegant, and commonsense attitude
in physics regain the acceptance they merit. The initial parts of the analysis
of atomic phenomena realized by Niels Bohr and leading to the concept of
atomic transition is also relevant to us from the descriptive viewpoint.

The basic ideas discussed here can be of interest for Physics, Mathematics,
Chemistry and Philosophy at levels ranging from college students to pro-
fessionals. Additionally there is a large number of educated readers with
a growing apetite for scientific developments. Mathematicians may under-
stand projective spaces and physicists will be accustomed to the behaviour
of electrons and atoms, but in some cases one may not be aquainted with
the facts familiar to the other. Therefore the discussion starts at the most
basic level and gradually builds up, providing as many details as neccesary
for such diverse audience.

In Chapter 1 a discussion of wave theories in general is presented. This pro-
vides background and contrast to appreciate Schrodinger’s theory, quantum
Theory and real theory as particular cases of a general scheme. Some less
standard material about rays (see section 1.1) will play a central role and is
explained at this initial stage.
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In Chapter 2 the original Schrodinger wave mechanics will be discussed as
a particular case of wave theory. The usual presentations consider states as
normalized wave functions but here states will be rays. Based on the ray
formulation the accomplishments and limitations of Schrodinger theory will
be examined in detail.

In Chapter 3 quantum mechanics will be presented as it was created, that is,
as a modification of Schrodinger wave mechanics. The uncertainty principle,
wave-particle duality and quantum jumps will be analyzed and their role
in quantism interpreted. The main feats and, in our opinion, failures of
quantism will be stated explicitly.

Chapter 4 is an introduction to realism. This alternative wave theory main-
tains continuity and determinism. Briefly, real wave dynamics consists of the
states (given as rays) and observables of Schrodinger original theory together
with a new non-linear evolution equation obtained in a natural manner from
the standard Hamiltonian self-adjoint operator. As the reader will be able
to verify, all the results of quantism that depend only on the calculation of
eigenvalues can be automatically incorporated into realism.

In Chapter 5 the formalisms of both quantism and realism are presented at
a more concise and technical level than in previous chapters.

The Appendix contains an example of a simple program that illustrates the
sensitive dependency on initial conditions as it appears in realism. The ba-
sic insight that eventually led to realism was provided by the mathematical
theories of Dynamical Systems and Global Analysis. A deep examination
of quantism and the discovery of realism would have been extremely diffi-
cult without these tools. Therefore two studies previously elaborated by the
author at a more technical mathematical level have been included as ad-
denda (not included in the e-mail version). These are an edited version of a
circulated but unpublished preprint called ‘Stability of Dynamical Systems
and Quantum Mechanics, I and the paper ‘Projective Spectral Theorems
and Deterministic Atoms’ published in Acta Cientifica Venezolana, 38, pp
570-574, 1987. The last one contains, from the physical viewpoint, a basic
study of symmetry breakdown in a magnetic field. Both addenda contain
also results of independent mathematical interest.
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Besides the already mentioned founders of modern atomism there are nu-
merous contributors to the topics here discussed. Instead of attempting the
colossal work of compiling a complete bibliography it is more practical to
refer the reader to the on-line electronic versions of the Science Citation In-
dex and Mathematical Reviews under the heading ‘Foundations of Quantum
Mechanics’ or similars. It will be enough to quote here the following minimal
list of
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CHAPTER 1

WAVE THEORIES

1.1.-Definition of wave. Traditionally, a wave is any unhomogeneity or de-
formation of a continuous medium. When deformations have a regular shape
or repetitive qualities they are generally called oscillations or vibrations, but
the concept of wave is not restricted to that case. A deformation can be
localized in a small region and have a rather irregular shape. The following
are typical illustrative examples.

Deformations of a stretched string can be represented by numerical valued
functions defined over an interval. The interval represents the string (contin-
uous medium) and the numeric values of the function represent displacements
from the resting position (physical magnitude).

The electromagnetic field is a wave in ordinary space and at each point
it is defined by a pair of vectors: The electric field density vector, that
measures the force exerted by the field on a charge at rest, and the magnetic
density that measures the additional force exerted by the field on a moving
charge. Here three dimensional vectors represent ordinary space (continuous
medium) and an additional pair of vectors represent the electric and magnetic
forces (physical magnitude).

The electron can be represented by means of a wave. One possible meaning
of this assumption is that the electron is an extended object that occupies
a volume and has a certain structure. This structure would give rise to the
wavelenght and other properties of the elecron.

In order to physically define a wave the homogeneous medium and the phys-
ical magnitude of interest have to be first identified. These depend on the
physical phenomena under study. The homogeneous medium can be space
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or space-time, a gas, a liquid, a solid, etc. The physical magnitude can be
gravitational or electromagnetic force, pressure, velocity, displacements, etc.
The particular formalism used to describe the waves is the kinematics of the
theory under study. Two classes of theories will be relevant for us, depending
on the kinematics.

The first class is related to the need for standard units of measurement in
applied science and engineering. This is the class of theories with a linear
kinematics or wave function kinematics. Consider a scalar physical magni-
tude, that is, a magnitude whose values have one degree of freedom. A unit
of measurement is chosen and the wave is then specified indicating, at each
point of the medium, the ratio of the magnitude to the unit. The result is a
(scalar) wave function. Note that this wave represents a physical object or
situation only when the chosen unit is specified. On the other hand, phys-
ical phenomena are intrinsically independent of choice of units. Units are
conventional technological objects.

In the more general situation of vector or tensor magnitudes (the values of
the magnitude have several degrees of freedom) a set of numbers instead of
a single number is required. The result is a vector wave function or a tensor
wave function, as the case may be. These scalar, vector and tensor wave
functions can be added and multiplied by scalars, that is, they form linear
spaces (also called wvector spaces) which is the reason for the term ‘linear
kinematics’.

Since ratios have been mentioned above, the following comment is in order:
usually a ratio is a real number. It is the case, however, that sometimes com-
plex numbers are considered, as with the impedance of an electrical circuit.
Therefore ratios have to be understood as either real or complex numbers.
See the end of this section.

The second class of theories can perhaps claim older historical roots, aris-
ing more directly from the classical ideas of proportionality. These are the
theories with a projective kinematics. A projective theory specifies waves in-
dependently of the choice of units. After the continuous medium of interest
is singled out, rather than the ratio to a chosen unit one considers the rela-
tive ratios of the physical magnitude at pairs of points in the medium; these
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relative ratios are independent of particular units. The result is a scalar ray
or simply ray. Rays are collections of wave functions. Wave functions and
rays are related as follows: Any wave function that is not identically zero
defines a ray. Two wave functions define the same ray if they differ by a
constant factor. Finally, all rays are obtained in this way. A wave function
and the ray it defines are associated to each other.

In standard mathematical notation, if ¢ is a wave function then the associ-
ated ray is denoted [¢] with

[V] = {\|X € scalars}

The term ‘projective’ comes from certain relations to Projective Geometry.
A projective space is a classical mathematical object constructed as the set of
lines through the origin in a linear space. But two points in the linear space
lie in the same line through the origin whenever one is a scalar multiple of the
other. Therefore the rays defined above are the elements of the projective
space associated to the linear space of wave functions. Furthermore, lines
through the origin can also be portrayed arrows emanating from the origin,
and this is the reason for calling [¢)] a ray.

Since rays are ratios of values of a physical magnitude, the magnitude can-
cels out and only the numerical ratio remains. Hence, rays are physically
dimensionless. They will play a central role in the critique and proposals
below.

Rays can also be considered for physical magnitudes with more than one
degree of freedom; in this way vectorial rays and tensorial rays are obtained.
However, only the case of one degree of freedom will be necessary; the vec-
torial and tensorial rays will not appear in our discussion.

On the other hand, two classes of scalars will be used: Real scalars (real
numbers) and complex scalars (complex numbers). Complex scalars appear
in Schrodinger theory and in quantism; note that there is no clear or simple
physical justification for their introduction. But the previous considerations
about wave functions and rays are valid both for real scalars and for complex
scalars.
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1.2.-Continuity of waves. Continuous waves occur in continuous, ex-
tended media. Continuous media are built from infinitely many points ar-
ranged in such a way that if one point is singled out then, arbitrarily close to
this one, other points can be found. This description does not categorically
determine the continuous media generally used in physics, but a detailed
discussion requires mathematical concepts like topological spaces and differ-
ential manifolds, which are beyond our present limits. For our purposes it
suffices to state that intervals, curves, surfaces and regions in ordinary three
dimensional space are continuous media.

Consider now a wave or unhomogeneity on a continuous medium. In linear
kinematics this wave consists, once a unit is chosen, of values of a physical
magnitude associated to points of the medium. The values vary according
to the point being considered. The wave is continuous if the following holds:
Whenever two points approach becoming close to each other then the values
of the magnitude at these points become close as well, and as the two points
merge into a single one the corresponding values become equal.

In projective kinematics a wave is continuous if one of the wave functions
associated with the ray is continuous.

1.3.-Spaces of states. The mathematical description of a particular wave or
unhomogeneity is called a state and all states taken together form the space
of states. Therefore the space of states is the collection of all conceivable
configurations the deformable medium can adopt.

Recall that in linear theories the space of states is the collection of all wave
functions, and this is provided with the operations of sum of wave functions
and multiplication of wave functions by scalars. Also, these algebraic oper-
ations give to the space of states of a linear wave theory the structure of a
linear space.

In projective kinematics the space of states is the collection of all rays. Note
that the operation of sum of rays cannot be defined in a consistent manner.
Therefore the space of states of a projective theory is a non-linear space. This
non-linear space is a projective space as explained in section 1.1. Mathemat-
ically, the non-linearity of projective spaces is an unavoidable consequence of
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their global topological properties.

Note that since scalars can be real numbers or complex numbers, there are
so far in our discussion four possible types of spaces of states: Real linear,
real projective, complex linear and complex projective.

1.4.-Observables. The second ingredient of a wave theory are the various
scalar magnitudes that can be associated to states. Recall that a wave can
present diverse peaks, wells and anfractuosities, being in general a compli-
cated structure. It is therefore convenient to make abstraction of details and
consider simple numerical magnitudes that nevertheless give relevant infor-
mation on the wave. An observable is a function of state, that is, a rule that
assigns a number to each wave.

1.5.-Energy. In this discussion the most important observable is energy.
The following simple physical definition will be adopted here: The energy of
a wave 1s its capability to produce movement. Since all forms of energy are
assumed interconvertible and equivalent other definitions are possible, but
the above seems well suited to our ilustrative purposes.

The kinetic energy is the energy the wave directly posseses by virtue of its
translational velocity. It depends on the reference system used to measure
the velocity.

The inner energy of a wave is the energy the wave has due to its particular
form. The following example clarifies the concept. A motionless spring can
be compressed, distended or flaccid; in the last case the inner energy is less
than in the others. This form of energy is intrinsic to the configuration of
the object.

The potential energy is the one attributable to an interaction between the
wave and other entities. It happens that this interaction implies a possibility
of movement and the potential energy is the energy the wave would gain if
the possible movement actually happened. Thus, a rock at the top of a hill
has potential energy due to its interaction with the Earth. If the rock falls
the potential energy effectively becomes movement.
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The total energy is the sum of the various energies under consideration. For
example, if only the internal and potential energies are relevant then the total
energy is their sum.

1.6.-Conservation of energy. As waves change in time their energy may
change, but the process is always subject to the Principle of Conservation of
Energy. This principle says that if the energy of a given physical system de-
creases then the energy of some other system increases by an equal amount.
Conversely, if the energy of a system increases then in some other system
the energy decreases. This applies in particular to wave systems. For exam-
ple, a vibrating string in a violin has energy and as the vibration decreases
the string energy becomes less. However, the energy has not dissapeared;
some was transmitted to the air as sound vibrations, some became heat and
produced a temperature increase in the string, etc.

In the last analysis the principle of conservation of energy does not apply to
partial systems but rather to the Universe as a whole. The reason is that any
known portion of the Universe interacts with its exterior and the interaction
implies energy exchange. If some strictly closed and isolated system exists
then it is not accessible to our physical knowledge.

Many systems can be studied theoretically assuming that they are isolated;
in this way useful approximated descriptions of their behaviour can be found.
An important advantage of these idealized treatments is their relative sim-
plicity.

1.7.-Wave movement. Movement of a wave means its change as time goes
on. Hence, a wave that occurs in three dimensional space can stay motionless,
can move in a rectilinear path with uniform speed, rotate, modify its shape,
etc. or can simultaneously undergo several of these transformations.

1.8.-Continuity of movement. The continuity of wave movements will
be considered now. The continuity of a wave was explained in section 1.2.
Continuity reappears now but in a different context. While formerly the
continuity properties of waves themselves were discussed, now the discussion
refers to the continuity of the process of wave movement.
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Consider a moving wave and the pair of configurations adopted by the medium
at two instants. The movement is continuous if whenever the two instants
are close enough in time then the configurations are more similar and close
to each other, becoming the same as the two instants merge into a single
one. This property must hold all along the process. If at some instant it fails
then the wave takes at that instant a shape that cannot be approximated by
shapes adopted at nearby instants.

The continuity of the process is important because it establishes a relation-
ship between cause and effect. If the wave is modified in a sudden and
discontinuous way it could not be said that the final wave comes from the
initial one, the connection between them is broken and it does not make
sense to say that the initial wave produced the final one. Therefore, in a
hypothetically discontinuous movement the connection between cause and
effect is broken. The initial wave (cause) is just an antecedent in time to the
final one (effect) without a causal relation in between.

Furthermore, the hypothetical existence of strictly discontinuous changes in
the configurations adopted by a supposedly continuous medium creates prob-
lems about the nature of the continuity of the medium.

Within the same circle of ideas, a finite physical wave that transforms itself
by means of continuous movements cannot suddenly cease to be an extended
wave and become a particle, that is, a point-like infinitely small object.

1.9.-Continuity as a doctrine. It is possible to raise physical continuity to
the level of a doctrine. This continuistic doctrine states that if in the study
of an object or phenomenon discontinuities appear, these are due to simpli-
fications (no doubt useful) that allow to ignore finer details or deeper levels
in the problem at hand. Therefore, doctrinary continuity assumes that it is
always possible to find an appropiate level where the object or phenomenon
will show its continuous character. For example, the initial idea of action at
distance leaves an empty gap (discontinuity) between gravitationally inter-
acting bodies. Curved space-time postulated by general relativity provides
a continuous medium (space-time itself) whose continuous unhomogeneity
(curvature) fills the gap and provides a physical model more acceptable to
continuism.
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Similarly, it would be more satisfactory if some continuous medium could be
clearly defined whose unhomogeneities constitute electromagnetic radiation.
This hypothetical medium is known as ‘luminiferous ether’ and is still an
open problem.

From the previous section it follows that doctrinary continuity is related to
a general conception of the way in which causes relate to effects: The cause
has to actually become the effect and this should happen in a continuous
way.

The ultimate foundation of the continuistic doctrine is the belief that the
physical universe has an everywhere continuous structure. This belief, as
well as its opposite (that the universe is essentially discontinuous) or any
other equally general doctrine, cannot be disproved. This type of doctrine,
unavoidable inside and outside science (scientific paradigms, religions, po-
litical or economical creeds, etc.) cannot be rigurously demonstrated nor
refuted. Their acceptance is always a convenience or an act of faith.

1.10.-Determinism of wave movement. When a given initial wave moves,
it modifies its shape and a continuous succession of new waves is seen to arise.
The waves in the succession are the new shapes successively assumed by the
initial wave. Suppose that the medium can be reset to the initial wave when-
ever necessary. The movement is deterministic if each time the medium is
reset to the same initial wave then the same continuous succession of config-
urations is generated. Therefore, if the succession is not the same then the
initial wave could not have been the same.

To make these considerations valid in general it may be necessary to extend
the concept of state to include the speed of the wave, its acceleration or
other relevant factors, as in classical mechanics the state of a material point
includes not only its position but also its velocity or momentum.

If a coin is thrown several times with exact repetition of the initial setting
then the same side turns up in all instances: Adequate control of relevant
conditions transform an apparently random phenomenon in a deterministic
one. This can be extrapolated to the following hypothetical situation: If the
Universe is reset to some past moment with all its parts occupying exactly
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the same relative states then, physical laws being equal, exactly the same
events and history would repeat themselves again.

Metaphorically, according to determinism, the same way of playing the violin
should produce the same music. If the music is not the same then the string,
the fiddling, the air, the listener or something else should have changed.

1.11.-Determinism as a doctrine. The deterministic doctrine centers
on the general belief that past states of the whole Universe determine the
present one and that the present state determines the future ones. The
relevant point is that the succession of states unfolds in a way that is, in
principle, unique and necessary consequence of the initial state. In other
words, and repeating the extrapolation of last section, future states of the
Universe will be necessary consequences of the present state as well as the
present is an unavoidable outcome of past states. A remarkably lucid and
famous metaphor of determinism is due to P. S. Laplace from which the term
‘Laplacian determinism’ arose.

A wave mechanical formulation of determinism considers the Universe as an
immense unhomogeneity with extremely varied structure. The states of the
Universe are then configurations of this hypothetical universal wave and what
was said in the previous paragraph about states of the universe applies to
this wave.

When referred to a limited system or portion of the Universe determinism can
often show partial validity only. But ample historical experience supports the
viewpoint that whenever determinism apparently fails it is in general possible
to extend the system under consideration and find contingencies responsible
for two seemingly identical initial configurations to produce disparing results.

For example, certain standard routine initial conditions are always assumed
at takeoff time for airplanes. The airplane is then expected to reach its desti-
nation. But if a crash happens, the assumed routine initial flight conditions
have produced an unexpected result. A search is then launched to find the
cause, that is, to find the relevant initial differences responsible for the acci-
dent. Various possibilities are considered. Mechanical or structural failure,
human error, insufficient fuel and similars could be causes localizable in the
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immediate vicinity of the airplane at takeoff time. A storm near the destina-
tion point, a colliding object and other contingencies could be far away from
the airplane at takeoff time, hence in this case the explanation requires an
extension of the initially considered system (airplane) to a larger one (air-
plane and atmospheric conditions or objects at far away places). Even if
experts disagree about the possible cause of the accident they share a deeply
rooted belief that the cause exists. This sought cause is the difference in
initial conditions that produced the unexpected outcome.

Determinism is still the foundation stone of scientific theories. The repro-
ducibility of phenomena is an essential requisite to establish the so called
scientific truths. Since the advent of quantism this important principle has
been partially neglected.

1.12.-Evolution laws. As a third and last component of a wave theory, a
dynamics or evolution law is required, that is, a rule that tells exactly how
waves move.

It is possible to theoretically conceive many different continuous and deter-
ministic evolution laws. In principle there are countless evolution equations.
Continuity and determinism are not enough to specify a process. In a wave
theory the specification of the dynamical law or precise way in which waves
move is made mathematically, in most cases, by means of partial differential
equations. If the equation can be solved it then provides an explicit formula
which specifies the continuous sequence that unfolds from each initial wave;
this formula is called a flow. In the wave theories relevant to our discussion
this continuous wave sequence contains also all waves that preceded the given
initial wave. This manner of specifying the process is explicit and exhaus-
tive. The posterior future and the previous history of each configuration are
completely known in the style of Laplacian determinism.

In linear kinematics the symbolism of wave dynamics is as follows. If ¥ is
a wave function at a given instant and ¢ indicates a time interval then 3®
or Uy symbolizes the wave function that (according to the equations) arises
from ¢ after time ¢ has elapsed. So, if ¥ and t are given data, the explicit
formula mentioned above allows the calculation of Uyp = 1.
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The evolution laws of theories with projective kinematics can in general be
obtained from the evolution laws of theories with linear kinematics. So, when
dealing with projective dynamics it will be assumed that it comes from an
evolution law U; given for the corresponding linear kinematics. In formal
notation, if [¢] is a ray at a given instant and ¢ indicates a time interval then
the new ray after time ¢ will be [U;] = [ ®)].

1.13.-Interpretation of theories. A wave theory is made up of meth-
ods to study a more or less wide class of wavelike phenomena by means of
the mathematical construction of spaces of states, observables and evolution
laws. These correspond roughly to possible shapes or configurations of the
objects under study, properties of these objects that can be associated to
numbers and behavior or way the objects move, respectively. The states-
observables-evolution scheme has a general character and applies to other
physical theories, not necessarily wavelike, as is the case with Newtonian
classical mechanics or Hamiltonian classical mechanics.

But for one of these mathematical constructions to be understood as a phys-
ical theory it has to be linked to the ‘physical world” by means of a semantic
element: An interpretation is conventionally required in order to provide
some of the mathematical entities with a ‘physical meaning’.

The interpretation seems necessary because the same mathematical object
can represent different physical situations. For example, if a vector (mathe-
matical entity) is associated to each point in three dimensional space, a wave
is defined; the wave can represent displacement, speed, acceleration, electric
force, etc., depending on how it is interpreted.

The interpretation gives a specific physical meaning to one or more mathe-
matical objects of the theory and is the link that binds the precise abstrac-
tions of mathematics with the less precise abstractions of physics and even-
tually with objects in the ‘real’ world. The ultimate nature of these objects
is neither physical nor mathematical and seems unsolvable or inaccessible
under these schemes.

However, not all the mathematical componenets of a physical theory have an
obvious interpretation. In the case of theories with a projective kinematics
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the rays are physically dimensionless quantities and therefore any possible
physical interpretation of the wave function will cancel out at the level of rays
and will not appear explicitly in the theory. Thus, for projective theories,
interpretation of the rays [¢] is not possible and interpretation of the wave
function v seems unnecessary or useless (and also harmless) since it will affect
neither the kinematics nor the dynamics. But some component of the theory
must have a physical interpretation. If there is no link with the ‘real” world
the theory is only mathematical and not physical. Some connection with
physical magnitudes is always necessary. For example, time ¢ is a physical
magnitude that appears in all theories with a dynamics. Also, the quantity
defined by equation 16 below is interpreted as energy and this makes the
theory of Chapter 4 a physical theory.

1.14.-Diversity of wave theories. Many wave theories exist. They are
used to study sound, heat, fluids, electromagnetism, etc. The theories differ
according to their various spaces of states, observables, dynamical laws and
interpretations.

1.15.-Validity criteria. No physical theory so far known is universally
valid. Each applies to a restricted or particular universe of discourse.

A wave theory is considered more or less correct depending on the degree of
concordance between the physical wave (that exists and changes as an object
in the physical world) and its behavior predicted theoretically by means of
the mathematical constructions and equations.

The case can arise of two theories with more or less similar predictions. If
the theories are not equivalent it is necessary to elaborate their differences
up to a point where distinct and experimentally verifiable predictions are
obtained. Once that level is reached the realization of experiments should
decide in favour of one. If the predictions are identical or the experiments
cannot resolve the matter then the simplest theory should prevail.

Theories are also expected to be free from contradictions. This means that
within the realm where the theory applies an object will not posses incom-
patible qualities.
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Of extreme importance and far above other aesthetic considerations, is the
simplicity of the theory. Regardless of being a seemingly subjective criterion,
it has had, and can be expected to keep having, great importance in the
elaboration and acceptance of models of the world.
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CHAPTER 2

SCHRODINGER WAVE MECHANICS

2.1.-Schrodinger waves. Schrodinger wave theory studies atoms consider-
ing the electrons as waves. These waves happen in three dimensional physical
space. They are mathematically specified assigning to each point a complex
number, that is, the wave is specified by a compler valued wave function or
Schrodinger wave function

Y :R®*— C (1)

The space of states is then a complex linear space. But, as will be shown
below, it is possible and convenient to modify Schrodinger theory to represent
the electron as a ray in the sense explained in section 1.1. See section 2.4
below.

2.2.-Interpretation of Schrodinger of wave functions. A Schrodinger
wave function specifies for each point in three dimensional space a complex
number. A complex number is also a plane vector; a new wave function can
be defined assigning to each point the square of the length of this vector.
The new wave function, denoted |1|?, is the amplitude of the original wave;
the values of the amplitude are not arbitrary complex numbers but rather
they are positive or zero real numbers.

The amplitude was interpreted by Schrodinger as an electric charge density;
see Jammer, M. The Philosophy of Quantum Mechanics, John Wiley & Sons.
New York, 1974., page 24. This means that the electron is considered as a
charge continuously distributed over space in such way that at points where
the amplitude takes larger values the charge is more intense and concen-
trated. Similarly, at points with lesser values the charge concentration is
more tenuous and diluted. This interpretation can be justified appealing to
formulas from Electrostatics.

The wave function itself, as distinct from its amplitude, was not interpreted
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by Schrodinger. Neither has quantism solved the problem of interpreting the
wave function (there is however a quantum interpretation of the amplitude;
see section 3.2).

Summing up, the amplitude of a wave function represents in Schrodinger
theory an electric charge continuously distributed in space: The ‘electronic
configuration’ or ‘electronic cloud’.

2.3.-Waves vs. particles. The wave function ¢ and its amplitude [|?
are entities that occupy a volume in space; in fact they usually occupy the
whole space (have non-zero values almost everywhere). Therefore there is an
extreme disparity between these extended objects and the material points
of classical mechanics or the point charges in electrostatics (infinitely small
particles). However, waves that represent microscopic particles are usually
localized in a relatively reduced region of space. This means that although
both the wave function and its amplitude extend theoretically everywhere,
its values outside the region are extremely small relative to the values inside
the region.

The question arises of the advantages gained studying a microscopic particle
by means of waves, when it could be more practical to simplify the problem
and consider instead the physical particle as an infinitely small point. The
answer is, first, that knowledge expects a representation as exact as possible
of its objects and if the electron, an ever present component of matter, is in
fact an extended object with structure, we want to know it as such. Second,
the detailed structure of Schrodinger waves is crucial to understand basic
facts like the periodic table, crystal structure, chemical afinity, etc.

2.4.-Schrodinger rays. Schrodinger theory will be now formulated in terms
of rays. As a preliminary step, passage from wave functions to rays can be
justified with a physical argument. The total charge is assumed constant
and the same for all electrons and, if taken as unit, the sum of the wave
function amplitude, or more precisely the integral over three-space of the
wave function apmitude, should be equal to 1. This is the normalization
condition. Furthermore, if the charge distribution is the physical state, two
waves differing in a phase, that is, in a complex factor of unit modulus,
correspond to the same physical state. This means that when states are
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represented by linear waves a redundancy is present.

It is possible both to normalize and to eliminate the phase redundancy in
a single step if wave functions that differ in a non-zero complex factor are
considered equivalent. Hence the states should not be wave functions ¥ but
rather classes of wave functions; each class [¢] is made up from the wave
function ¥ and all its non-zero multiples. These classes are precisely the
rays of section 1.1. Therefore it is more natural in Schrodinger theory to
represent the physical states of the electron by means of rays associated
to the complex wave functions; these can also be called Schrodinger rays.
Quantum mechanicists often call them Hilbert rays. As a consequence the
natural space of states in Schrodinger theory is a complex projective space.
Complex projective spaces have been the subject of extensive study in several
branches of mathematics; see section 5.15 for details. Representing physical
states by rays can be considered as a simultaneous renormalization of all
states.

In most presentations of Schrodinger theory and quantism the question of
equivalent wave functions is seldom mentioned; in the exceptional sources
where it is mentioned little use is made of it. This is equivalence is a very
important detail for if the redundancy mentioned in section 2.4 is mantained
then the evolution equation (see below) is linear, while if the redundancy
is removed by passage to rays and projective spaces then the the evolution
equation is non-linear. Also, stationary states are motionless only in the
projective theory while in the linear theory they are endowed with a periodic
oscillatory motion.

In conclusion, it is possible to reformulate Schrodinger wave mechanics in
such way that states are the Schrodinger rays and the space of states is the
complex projective space associated to the linear space of complex valued
wave functions. The interpretation of wave amplitudes as charge densities
requires then a modification. In the ray formulation |¢|? is a relative charge
density. See the discussion in section 1.1

2.5.-Energy of Schrodinger rays. The basic observable in our discussion
is the energy. Generalities about the energy of waves were discussed in section
1.5. The mathematical formulas for the energy of Schrodinger rays will be
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stated now.

The internal energy of the ray [¢] is

[IVy|®
J 1P

(2)

and this is equal to

UV 5
IR
This expression has traditionally been called ‘normalized mean value of the
kinetic energy’ of the wave, instead of the more natural ‘internal energy’
adopted here.

The potential energy is given by

[UlY[*
J 1P

(4)

which can be expressed as -
[U ¢ 5
Jey
The potential energy of the electron depends on objects interacting with it
(a proton for the hydrogen atom) and this is taken into account by means of
the function U = U(x,y, z) that appears in the previous formula.

The total energy of the wave is then equal to

[(=V+ U) ¢
IR

(6)
The mathematical expression
H=-V*+U (7)

is called the Schrodinger operator and can be used to formally reformulate
the total energy as -
JHY )

[0 (8)
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and this can be further expressed as

()
%, %) ®)

For an explanation of this notation see section 5.1.

2.6.-Schrodinger evolution law. In Schrodinger wave mechanics the
movement of wave functions is described by Schrodinger evolution equation:
9

(—th) 5o = =V +UY (10)

where h is Planck constant. Note the imaginary unit 2, :* = —1. In terms of
the Schrodinger operator the evolution equation can be written as
9

(—h)5, = HY (11)

A wave function initially equal to ¥ will move in the continuous and deter-
ministic way specified by this equation to become, after time ¢, equal to a
certain wave function U;b. At the more exact level of the rays, a physical
wave initially equal to [¢0] becomes [U;1)]. So, as explained in section 1.12, the
time evolution at the linear level induces the time evolution at the projective
level.

A general basic description has been given so far of states, their interpre-
tation, the energy observable and the dynamical law of Schrodinger theory.
Note however that the projective kinematics presented here was not used
in the original formulation. Instead of a projective space the ‘unit sphere’
of the space of wave functions was used by Schrodinger and there a phase
redundancy remains.

2.7.-Conservation of energy. When waves move according to Schro-
dinger evolution equation they do so in the continuous and deterministic way
already explained and, additionally, energy is preserved during movement.
Hence, the mathematical models proposed by Schrodinger wave mechanics
are models of physically isolated and energetically closed systems.

2.8.-Atoms and photons. Some properties of matter and light will be
discussed now.



2. Schrodinger wave mechanics 27

Matter gives and takes energy in the form of light. Ordinary matter is con-
stituted by many microscopic atoms and light is also made up of a large
number of individual microscopic entities, the photons.

In empty space photons travel in straight line and they all have the same
speed. But photons are not identical. They differ, besides other things, in
their energy content. Different energies correspond to different colours. The
various colors that make up a light ray can be separated by means of a prism
and they come in the sequence red, orange, yellow, green, blue and violet;
this is the order of increasing energies. There is also infrared and ultraviolet
light invisible to the naked human eye. The study of the energies (colors) of
the light emmited and absorbed by objects gave rise to Spectroscopy.

During emision and absorption of light, atoms and photons interact individ-
ually with each other. On the other hand, due to the extremely small size of
both atoms and photons their direct experimental study as individual objects
is rather difficult. For example, instead of an individual atom large collec-
tions of atoms are considered, say, a gas in a glass enclosure. If the enclosure
is provided with electrodes an electrical current can be passed through the
gas and it becomes incandescent. This is the way neon lights work. The
many atoms in the gas emit then many photons and the individual emissions
are amplified in this way. When the light emited by the gas passes trough
a prism and strikes a screen the emision of very many photons of a certain
energy can be inferred from the presence of a corresponding color.

The fact to be underlined is that the light emited by the atoms of a particular
element does not contain all colors. When separated by the prism instead of
a complete rainbow only a few colors show up forming narrow bands known
as spectral lines. Each element has a characteristic sequence of spectral lines
that constitute its spectrum.

If colors are reinterpreted as energies it can be concluded that atoms do not
emit photons with arbitrary energies but rather they form a discrete and well
defined succession characteristic of the element. This is the remarkable phe-
nomenon of discretization of energy at atomic level. A similar discretization
appears in energy absorption processes.
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2.9.-Schrodinger description of a hydrogen atom. In order to examine
atomic spectra along the guidelines of Schrodinger wave mechanics it will be
assumed that the atom under consideration is of the simplest element, that
is, a hydrogen atom.

The hydrogen atom is normally made up of one proton and one electron. The
proton has positive charge and is the nucleus or central part of the atom.
The electron has a negative charge and occupies the periphery. The charges
have opposite signs but the magnitude (absolute value) of the proton total
charge equals the one on the electron. On the other hand the proton mass
is about 1830 times the electron mass.

Protons and electrons interact by mutually attracting each other. In Schro-
dinger wave mechanics the proton presence is taken into account by means of
the potential energy it provides to the electron; see sections 1.5 and 2.5. Thus,
the proton is represented by means of an electrostatic potential U(z,y,2)
which in the more elementary cases does not change with time. This potential
is a mathematical way to express the fact that the proton attracts the electron
with an electrical force that is inversely proportional to the square of the
distance and pulls towards the proton center from all directions (spherical
symmetry).

The electron is represented by means of a ray [¢)]. Therefore, when Schrodinger
viewpoint is adopted the electron is considered as a structured and extended
object that occurs in space.

The energy of the atom, that is, the energy of the proton-electron system, is
the total energy of the wave [¢] as given by formulas 8 or 9 in section 2.5.

2.10.-Movement of atoms according to Schrodinger. Based on the
equation he postulated for wave movements Schrodinger studied his model
of the hydrogen atom making a detailed analysis that revealed the following.

The waves [¢] fall into two categories: motionless waves that are usually
called stationary states (stationary waves, proper states, eigenstates) and
waves in permanent movement.
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Mathematically a wave [¢] is motionless if [¢)] = [Up] for all times t. Sta-
tionary waves are electron configurations that are locked in themselves and
unable to move. Non-stationary waves are endowed with a movement that
in theory obeys Schrodinger evolution equation.

There are infinitely many motionless waves and these can be enumerated

[¢0]7[¢1]7[¢2]7'"7[771)“]7"' (12)

The energies of the stationary waves are called stationary energies (or eigen-
values) and can be similarly enumerated

— <M< < <A< <0 (13)

These energies are negative numbers due to conventions that give negative
values to the energy of an electron when it is bound to a proton.

In order to mathematically calculate the stationary waves and stationary
energies it is necessary to solve the Schrodinger eigenvalue equation:

— V3 + U = A (14)

or equivalently

Hy =My (15)
and once this is done the above enumeration of stationary states and energies
follows.

Figure 1 on page 37 shows the results of the calculations for the case of
the hydrogen atom. The stationary energy values are shown arranged in a
column from higher values (top) to lower ones (bottom). A horizontal line
has been drawn for each stationary energy. The arrows represent transitions;
these are discussed in section 2.12.

The state [¢0o] with lowest possible energy is the fundamental state or base
state; all other states have higher energy and whether or not stationary they
are excited states.

Schrodinger analysis actually shows that for each excited stationary energy
there are not one but rather several stationary states. More precisely, instead
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of a single stationary state [¢,] with energy —\,, there is a full (n + 1)?
dimensional vector space E, of eigenfunctions, the eigenspace of —\,. The
eigenvalue —J,, has multiplicity (rn + 1)?. This is related to representations

of the group of rotations of ordinary 3-space.

—dad
_)\n -
. (n+1)? :
_)\2 : g—j ' M
—)\1 ;—f \ A
_)\0 = —q YYVY

Figure 2.10-1. STATIONARY STATES AND ENERGIES OF THE HYDROGEN
ATOM

It follows that stationary states form a ((n + 1)*> — 1)-dimensional complex
projective subspace namely PE, = {[¢]|¢ € E, —{0}}. The dimension-
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ality of these subspaces show up physically in phenomena like Zeeman and
Stark effects. Such effects are referred to as ‘symmetry breakdowns’ and
mathematically correspond to splittings of the multiple eigenvalues and to
bifurcations of the projective flow. The interesting dynamics of the Zeeman
effect is discussed, from the viewpoint of realism, in Crespin, ‘Projective
Spectral Theorems and Deterministic Atoms’, Acta Cientifica Venezolana,

38, pp 570-574, 1987, referred later as [PST].

According to Schrodinger equation, electron movement in the hydrogen atom
happens without change in the energy content of the wave and this is equiv-
alent to consider the atom as an energetically closed system.

For atoms of other elements as well as for molecules similar theoretical results
have been derived from Schrodinger theory; the potential and the number of
electrons are changed as the case may be, arriving to other stationary waves
and energy values.

2.11.-Relation of theory to experiment. The spectral lines of hydrogen,
as seen in experiments, and Schrodinger theoretical calculations, are related
in the followig way: The photons emited by the hydrogen atom have ener-
gies equal to differences of eigenvalues. For many other atoms and molecules
similar calculations have been performed with results that agree with exper-
imental results.

2.12.-Transitions. The relation pointed out between the the theoretical
calculations and photon energies is compatible with the following hypothe-
sis about electron behavior: The electron is a wave that, when motionless,
adopts the shape of a stationary wave, as calculated from Schrodinger theory.
[ts movements consist in the passage from a stationary state to another one.
These movements imply photon emision or photon absorption. Atoms either
decrease their energy by an amount equal to the energy of the emited photon
or increase it by an amount equal to the energy of the absorbed photon.

For if the electron is assumed to be in state [t,,,] its energy equals —\,,, and
if it moves to state [¢x] the new energy will be — A so that the energy change
equals the difference A,, — A\x between the stationary energies. As pointed
out before, these are the energies that, according to experiments, the emited
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and the absorbed photons have.

The movement from a stationary wave to another one with a different energy
is a transition. According to the hypothesis above, when transitions occur
the atom emmits or absorbs photons.

The transition hypothesis is a fundamental descriptive contribution due to
Niels Bohr. It can be reformulated as follows:

ELECTRONS IN ATOMS ARE WAVES THAT TEND TO ADOPT THE SHAPES OF
STATIONARY WAVES. ELECTRON MOVEMENTS CONSIST OF TRANSITIONS.

The transition hypothesis is extremely simple and gives a reasonable descrip-
tion of the way atoms behave. But the description is incomplete because it
does not specifies the particular way in which the waves move while transi-
tions happen. It only says that transitions are movements between stationary
states and there are, in principle, infinitely many process that carry one sta-
tionary state to another one. Now, in Schrodinger wave theory, all waves
move at all times in a very specific way, that is, according to Schrodinger
evolution law. In particular, as transitions occur waves have to move accord-
ing to that law. As will be seen in section 2.14, this made Schrodinger wave
mechanics fail.

Summing up, the electron is a stationary wave except when making transi-
tions. As result of transitions the atom emits or absorb photons. Arrows in
Figure 2.10-1 indicate transitions.

2.13.-Success of Schrodinger theory. Schrodinger wave mechanics is a
general theoretical system from whose equations atomic stationary energies
can be deduced. This is its paramount initial accomplishment. Further-
more, the theory defines and allows the calculation of stationary states and
these provide a comprehension of various phenomena like chemical bonds, the
structure of the periodic table, the disposition of electrons in molecules, etc.
For the first time an accurate theoretical image of how stationary electrons
look like in atoms became available.

2.14.-Failure of Schrodinger theory. As already explained (sections 1.7
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to 1.12) waves generally evolve in a continuous and deterministic manner; this
happens in Schrodinger theory. Such behaviour of waves is natural and ex-
pected. And furthermore, in Schrodinger theory waves move mantaining con-
stant energy. See the end of section 2.10. However, when photons are emited
the electrons lose energy; similarly, when photons are absorbed their energy
increases. But if atomic electrons are waves that obey Schrodinger evolution
law they should move without ever changing their energy and therefore no
transitions will happen and no photons would be emmited, which contradicts
experimental and quotidian facts. This contradiction made Schrodinger wave
theory fail. It was originally pointed out by Bohr. See Jammer, op cit.pages
56, 57.
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It s not enough to open the window

to see the fields and the river.

It does not suffice to be not blind

to see the trees and the flowers.

It 1s also necessary to have no philosophy.

With philosophy there are no trees: there are only ideas.
There is only each one of us like a cellar.

There is only a closed window and all the world outside;
and a dream of what could be seen if the window would open,
that is never what is seen when the window opens.

Fernando Pessoa
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CHAPTER 3

QUANTISM

3.1.-Description of Quantism. Quantum mechanics is an attempt to
rescue Schrodinger theory by direct redemption of its failure. Quantism
consists of Schrodinger theory with one substitution and three (at least)
additions.

Quantum mechanics and Schrodinger wave mechanics have the same space
of states, observables and evolution equation; these were explained and crit-
icized in the previous Chapter. If no other elements are taken into account
they are one and the same theory. Therefore they have a common formal
description of electrons in atoms and both theories have the same stationary
states and stationary energies.

The substitution is a change in the interpretation of the wave amplitude. The
amplitude previously thought as a charge density is now to be interpreted as
a probability density; see the next section.

The additions are the Uncertainty Principle, the wave-particle duality (or
complementarity principle) and the quantum jumps.

3.2.-Probalilistic interpretation. According to this interpretation the
Schrodinger ray [¢] is still some sort of object in ordinary three dimensional
space but now its amplitude no longer represents the electron as an electric
charge distribution but rather as a probability density. So, the electron is
not considered as a charge continuously distributed in space but rather as a
pointlike charge. This infinitely small and electrically charged point moves
then in an unspecified and intrinsically unpredictable way in three dimen-
sional space, appearing in one position to vanish and reappear somewhere
else. The relation between this blinking phenomenon and the amplitude is
that the electron appears with higher relative frequency in regions where the
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amplitude is relatively larger and more sporadically in those regions where
its value is relatively smaller. Hence the statement that the amplitude is a
probability wave.

According to this orthodox quantum interpretation the electron is point-like,
does not obey any deterministic evolution law and additionally quantism as-
sumes that this is a new, general and important quality of natural phenomena
at microscopic level.

There is no explicit indication of how long the transient apparition of the
electron at a point lasts; it is not said if it stays motionless during a finite
time or if it moves following a continuous trajectory. There is even a variant
(less orthodox) viewpoint that says that pointlike electrons move along a
continuous curve and the amplitude measures the average time the particle
stays in a region of space. It is to be presumed that the particle enters and
exits the region succesively and the time inside the region is added up to
calculate the average. It should be noted, however, that such trajectory has
never been explicitly defined and the hypothetic continuous curve variant of
the probabilistic interpretation does not seem to have the general acceptance
given to other aspects of quantism.

The probabilistic interpretation is related to the original charge density inter-
pretation of Schrodinger as follows: The apparition or insistent permanency
of the electron in a given region would have the same effect than a higher
charge density distributed over the region.

The interpretative probabilism introduce new elements in the general prob-
lem of description of natural processes and its proposal of fundamentally
discontinuous and indeterministic processes produced a crisis that surpassed
the boundaries of Physics, reflected in other branches of Science and disar-
ranged a long scientific and philosophic tradition.

3.3.-Uncertainty principle. This principle states that it is impossible
to measure with unlimited precision and simultaneously the position and
momentum of a microscopic entity. The principle is supposed to be equally
valid for ordinary macroscopic objects but is mathematically stated in such
way that it is easy to ‘prove’ using elementary arithmetic that in this case
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the consequences are trifling. If having a position and speed are considered
inherent to the way in which objects exist, the uncertainty principle implies
that the manner in which things are suffers from certain intrinsic undefinition.

The postulated uncertainty is, rather than a scientific law, the metaphysical
and ideological support of the quantum project to explain transitions as truly
spontaneous phenomena that do not obey any deterministic law.

3.4.-The wave-particle duality. Known also as Principle of Complemen-
tarity, the Wave-Particle Duality says that microscopic objects have both
wave (extended and structured objects that occupy a volume) as well as
particle (infinitely small objects that occupy a point) properties.

As pointed out in section 1.1, the idea of wave should not be restricted to
vibrations or oscilations. The later are special cases where there is regularity
or repetitivity over long regions. The only general requirement imposed
upon waves will be that they should consist of a continuous unhomogeneity
in ordinary three dimensional space.

The complementarity axiom validates a duplicity that in the last analysis is
mere convenience: On one hand it allows to collect the benefits of the fine and
elaborate details of a wave theory and on the other it also accepts the useful
but much more elementary and simple-minded schemes and calculations of
the particle-like conception.

Complementarity assumes that microscopic entities will manifest wave or
pointlike properties depending on the context surrounding them. This view-
point should be compared with the statement at the end of section 1.8.

In some popular presentations the wave particle duality pretends even to be
a version of certain general dialectic principles. This duality is often invoked
to pass many logically contradictory aspects of quantum theory as dialectic
oppositions of nature.

3.5.-Quantum jumps. The third addition of quantism to Schrodinger the-
ory is the quantum jump. This is the mechanism proposed by quantism to
explain the transitions that according to Schrodinger theory do not occur
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but that, as experiments show, do happen.

Quantum jumps are wave movements radically different from the ones spec-
ified by Schrodinger evolution law.

This new process of change consists of a abrupt motion that is not predictable
with precision. Thanks to this movent a given stationary state suddenly
becomes another one. In a more detailed way, quantism postulates that if
[n] is a stationary state of an electron in an isolated atom then this state
will persist for an indefinite time (with a 100% probability). But due to
interactions with other objects a small deviation can occur towards a nearby
state [t),,] endowed with a small movement ([¢,,|=perturbation of [tb,,]; [thm]
is non-stationary). There is then a non-zero probability of a transformation
of [1h,,] into a new stationary state [ox]. This final sate is in general neither
close to, nor does it resembles, the initial stationary state. This brusque
change is also called reduction of the wave packet.

Since the electron is supposed to adjust its appearences to the dictation of the
probability wave, a change in the quantum wave could perhaps be understood
as a change in the electron schedule.

The most important observation here is that the quantum jump violates
Schrodinger evolution law, and it is an admirable paradox of quantism the
fact that both types of movement (Schrodinger evolution equation and quan-
tum jumps) are accepted as a correct description of what takes place in the
atom.

A wave that suddenly changes in a process devoid of a whole sequence of inter-
mediate shapes constitutes a discontinuous movement of the wave. Therefore
the concept of discontinuous quantum jump. From this discontinuous char-
acter and the continuous nature of the movement according to Schrodinger
evolution law, it is beyond doubt that the two processes are totally different.

A form to smoother the paradox is to assume that the wave generally moves
according to Schrodinger dynamics and that at some instant the movement
disobeys this law; then the movement proceeds in the ilegal, unpredictable,
sudden and random manner typical of quantum jumps. From this view-
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point the two dynamics are not superimposed one to another but rather they
complement each other, taking turns at separated times to direct electron
comportment.

However, even separating the two dynamics the problem of the random na-
ture of the jump persists. Additionally, the mechanism that suppresses one
of the laws to give control to the other is not at all clear, with not much of
an explanation beyond some vague invocation to the Uncertainty Principle.

Another way to deal with quantum jumps is the quantum theory of measure-
ments. This theoretical apparatus concludes that the reduction of the wave
packet is consequence of interactions between the atom and a measuring in-
strument. This gives a special role to the the observation process all the
way up to the observer, introducing an undesirable subjective element in the
explanation of the quantum jump.

3.6.-Occult variables. It is natural to ask whether there exists at a deeper
level inside matter some hypothetical physical principles that could provide
a basis to explain transitions within a continuous and deterministic scheme,
providing a reasonable alternative to the jumps that quantism postulates
and to the belief in basically random and discontinuous processes. This is
the problem of the occult variables. They have been widely discussed from
a general speculative viewpoint, but apparently have not yet been found or
explicitly defined and are therefore an open problem.

3.7.-Random point vs. random wave. The the quantum interpreta-
tion of waves was discussed in section 3.2. This interpretation presumes an
essentially probabilistic movement of a point-like electron that appears and
vanishes randomly. The amplitude of the wave function was to be considered
a portrayal of the electron preferences to show itself in various domains of
space. The wave [1] can even be motionless and nevertheless the electron
keeps hurdling from one place to another in order to conform the program
imposed by the wave.

In the case of quantum jumps it is not the point-like electron but rather the
extended wave [¢,,,] that suddenly moves and becomes the wave [1,,]. There-
fore, while the probabilistic interpretation refers to the random movement of
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a point-like electron, the quantum jump has to do with the random move-
ment of an extended wave. It follows that quantism contains two classes of
random movements.

This is confirmed by the fact that during its random trek the electron can
occupy essentially an arbitrary point in space, while the quantum jump of
the wave cannot land in an arbitrary wave but only in a stationary one. In
other words, for the particle-like electron there are no forbidden points but
for the wavelike electron only stationary waves are allowed.

The random movement of the point-like electron and the quantum jump
performed by the wave happen in absence of deterministic equations; this
is the very reason why they are called random. They happen even against
the applicable evolution laws, namely, the laws of classical electromagnetism
for the particle-like electron and Schrodinger equation in the case of waves;
in the first case the electron would spiral down to the nucleous continuosly
radiating energy until the atom would ‘collapse’, and in the second case the
atom would never radiate.

3.8.-Success of quantism. Quantism mantains the space of states, the
observables and the continuous and deterministic law of movement created by
Schrodinger and for that reason it automatically collects the accomplishments
of Schrodinger theory regarding stationary states and energies. See section

2.13.

Additionally quantism changes the interpretation of the wave amplitude and
invents the uncertainty principle, the wave-particle duality and quantum
jumps.

Postulating quantum jumps quantism pretends to ‘explain’ transitions rais-
ing them to the category of axioms, that is, considering them as basic facts
of nature, irreductible and unexplainable in terms of simpler underlaying
phenomena. In particular, these jumps are seen as unexplainable in terms
of continuous and deterministic processes. This viewpoint did not exist in
Schrodinger wave mechanics and has been hailed as the great triumph of
quantism and of contemporary science itself. But these controversial parts
of quantism contain and imply so many complexities, obscurities and contra-
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dictions that perhaps they are just another scientific blunder.

3.9.-Pure probalility. In order to further clarify the content of quantism
it is useful to consider the following alternative wave theory, which can be
called PP theory , where electron movements happens in a purely probabilistic
fashion. This theory is not proposed as physically sound but only as an
artifact to emphazise the respective roles of Schrodinger evolution law and
quantum jumps.

PP theory has the same space of states and observables than Schrodinger
theory but does not has an evolution equation. Waves are to be interpreted as
in Schrodinger theory. In PP wave mechanics the Schrodinger evolution law
is simply dispossed off. Furthermore, to replace it, the notion of evolution law
explained in section 1.12 is extended so that waves are no longer constrained
to satisfy a differential equation. Any rule, even a random one, of any kind,
that just specifies wave motions, will be acceptable.

PP theory then postulates that waves move executing quantum jumps of an
intrinsically probabilistic nature.

These jumps happen in the following way: First, stationary states are defined
by means of Schrodinger eigenvalue equation 2.10-1; they are states satisfy-
ing that equation. Non-stationary states will be called virtual states. An
electron can occupy any stationary state and if perturbed will occupy nearby
virtual states. When the electron stands at a virtual state there are non-zero
probabilities of a quantum jump towards a stationary state.

Probabilities are calculated with the same mathematical rules of quantum
theory; these depend only on the coefficients of the eigenfunction series for
the virtual state and not on the evolution law.

PP theory postulates then that atoms emit photons when electrons move
from a stationary state to another one with smaller energy. All this in ac-
cordance with Bohr transition hypothesis explained in section 2.12.

PP theory provides a satisfactory explanation of atomic and molecular be-
haviour with a random dynamics similar to the one of quantism. But, unlike
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quantism, PP wave theory is self-consistent because it does not contains a
continuous and deterministic dynamics that contradicts the random dynam-
ics.

In order to dismiss PP theory as incorrect it is necesssary first to accept
as physically valid the general principles of continuity and determinism ex-
plained in Chapter I. Under these assumptions PP theory is a mistaken
description of the real electron movement or, at best, it should be considered
only as a provisory model to be discarded as soon as a continuous determin-
istic theory that explains the same physical phenomena is available.

In conclusion, PP theory is wrong because it has no continuous and determin-
istic dynamics to describe wave movements. If continuity and determinism
are discarded then PP theory becomes correct and has an undeniable ad-
vantage over quantism because it is self-consistent and explains the same
phenomena. As for the uncertainty principle and the Wave-particle Duality,
from the viewpoint of PP theory their role could be ideological but they are
anyway unnecessary.

3.10.-Failure of quantism. While Schrodinger theory fails because it does
not offers an explanation of transitions, quantism fails because of the nature
of the explanation it provides. Indeed, quantism is logically contradictory
because it postulates two movement laws that are incompatible. These laws,
that quantism assumes as simultaneously correct, are Schrodinger evolution
law and the quantum jumps. The laws are incompatible because if one of
them holds then the other cannot be valid. To reconcile the laws stating
that they alternate and apply at different times creates additional problems
mentined in section 3.5.

Logical inconsistency is a serious inconvenient for any theory. Elementary
Logic shows that if in a formal system contradictory statements are supposed
simultaneously valid then all statements are both true and false. In the case
under consideration it will be possible in principle to ‘predict’ any experi-
mental fact. Still worse, if theoretical calculations disagree with experimental
measurements there is a generous provision of parameters to be adjusted and
match any desired numerical values. The final result is that the predictions
or the post-facto adjusted predictions will agree with the measurements and,
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by the same token, will confirm the theory.

As seen in the abundant literature on the subject, the paradoxical elements
contained in quantism often stir an overwhelming temptation to state its
contradictions, generally followed by attempts to resolve them. Whatever
the conclusions, if inconsistent principles are accepted all arguments will
eventually give rise to new contradictions.

Note also that Schrodinger wave mechanics is in fact an internally consistent
theory, although it does not predict transitions. Its contradictions are not
internal but rather external: They show up when the theory is compared
with experiments. Nevertheless Schrodinger achievements (see section 2.13)
were extremely important and have been appropiated by quantism to conceal
under a cloak of validity its own more controversial aspects.

The above considerations carry the conclusion that quantum theory gives
an incorrect description of microscopic phenomena. Logical consistency is
an indispensable requisite to be demanded from all scientific theories and is
not satisfied by quantism. This demand stems from the deeply rooted belief
that Logic collects or reflects fundamental properties of the material universe
at all its levels. Continuity and determinism are desirable conditions that
seem obtainable from general logical considerations; continuity provides the
necessary link between cause and effect while determinism afirms that there
are definite causes or reasons for all phenomena.

3.11.-Failure of extensions of quantism. Theoretical amplifications of
quantism like quantum electrodynamics and other quantum field theories
have been created according to the idea of random quantum jump and as-
sume as well the simultaneous validity of two incompatible dynamics. On
one hand they postulate continuous and deterministic evolution laws (‘uni-
tary flows’ in technical terms) predicting that particles or fields will stay
forever as virtual particles and fields; on the other hand they have proba-
bilistic and discontinuous ‘creation’ and ‘destruction’ operators responsible
for the sudden appearance and vanishing of ‘real 'particles from ‘virtual’ ones;
these phenomena are supposed to occur in nature in an intrinsically random
manner and are, at the level of field theory, a mockery of electronic quantum
jumps. The limitations of the field evolution equations are similar to the
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ones of Schrodinger evolution. They cannot, for example, deterministically
predict a photon emission; if such deterministic prediction were possible the
probabilistic interpretetion could be omited from quantum electrodynamics,
but this is not the case.
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Intelligence, give me

the exact name of the things!
... Let my word be

the thing itself,

anew created by my soul.
Let through me go all

who do not know them, to the things;
let through me go all

who now forget them, to the things;
let through me go all

the same who love them, to the things...
Intelligence, give me

the exact name, and yours

and theirs, and mine, of the things!

Juan Ramén Jiménez



46 4. Realism

CHAPTER 4

REALISM

An attempt has been made to mantain a rather discursive and informal
style in this Chapter, similar to the previous ones. For a more formal and
concise discussion see Chapter 5 which contains also deductions of formulas
and calculations used here. The name Realism has been adopted because
only real scalars are necessary. It is also a suggestive term with interesting
philosophical implications.

The basic concepts of states, space of states, interpretation, observables,
energy observable and evolution have already been discussed for wave theories
in general; see Chapter 1. Schrodinger theory and elementary properties
of atoms were considered in Chapter 2 and quantism was explained and
criticized in Chapter 3. Everything is now ready to introduce real wave
theory.

4.1.-Real states and their interpretation. Realism considers real wave
functions

Y:R*—= R
and identifies physical waves with the rays []. As explained in Chapter I,
two non-identically zero wave functions define the same ray or real state if
they differ in a real scalar factor. The real space of states is therefore a real
projective space.

The rays are dimensionless quantities and cannot be, or do not have to be,
interpreted. In other words, the rays [¢)] represent states of any underlay-
ing wave-like physical magnitude existing in three dimensional space and
assuming values with one degree of freedom.

Real wave functions ¢ have amplitudes ¥ = [)|*> whose rays [¢)?] are also
dimensionless and can be interpreted along the lines of Schrodinger theory,
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that is, as dimensionless ratios of relative charge densities.

Related to this discussion is the idea that all forms of matter and radiation
are space unhomogeneities and that space is a diluted or tenuous form of
matter. This could mean that there exists a unique substance in the Uni-
verse. Several more or less unequivalent formulations of the idea are known
(Parmenides, Sankara, Spinoza, Descartes, Faraday, Einstein and many oth-
ers) and it belongs to the category of schemes that cannot be proved. See
section 1.9. Nevertheless, it has considerable aesthetical appeal and even for
scrupulous positivistic scientific sensibilities it can be commended as valuable
orientation.

If the question of interpretation is treated along these unified or monistic
guidelines, it is posible to conceive real states as space deformations, in which
case the electron could be considered a space unhomogeneity, and charge
density would also be a space unhomogeneity. The consistency of this rather
general proposal is an open problem.

4.2.-Energy observable The real energy observable is a function of real
states given by
J(=V*+ U (HY, ¢
exl] = 1 Lo 0. ) (16)
Joid ),

For a justification of this expression see Chapters I and II. This is in principle
the same as formulas 8 or 9 in section 2.5, but now the wave function ¥ is
real valued.

4.3.-Real evolution. At the level of wave functions the real evolution

o .
o= (=2 HY (1)

Note the absence of the imaginary unit, in contrast with the evolution equa-
tion 11.

equation is

This equation is known as a diffusion equation; these are widely studied and
at the level of wave functions do not seem at all related to atomic transition
phenomena.
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But at the level of rays this equation predicts deterministic continuous tran-
sitions between stationary states with sensitive dependency on initial condi-
tions, a situation fashionably referred to as chaos. Recall that consideration
of the rays instead of the associated wave functions is equivalent to a global
renormalization of states and results in a non-linear theory. see section 2.4.
As will be seen, the consequence is a behavior of physical states deeply dif-
ferent from the one obtained from Schrodinger evolution equation.

4.4.- Analysis of movements. If the energy ey is considered as a numeri-
cal function (sometimes called a functional) with domain the real projective
space of rays then equation 17 is the same as an evolution way down the
energy gradient

(Y] = (=2/h)VenlV] (18)

This formula is proved in Crespin, ‘Stability of Dynamical Systems and Quan-
tum Mechanics, I referred later as [SDSQM]. The formula tells that states
move in a way that decreases energy in the most efficient manner. This
gradient form of the evolution equation suggests, when compared to Morse
Theory, that the pecularities of atomic behaviour are consequence of global
geometric properties of the space of states, that is, of the topology of infinite
dimensional real projective space. See section 4.11.

As is done in general with all evolution equations when studied as dynamical
systems, real states are sorted out into two classes. One is the class of
motionless states (stationary states, critical states) and the other is the class
of states endowed with movement. The stationary states of realism are rays
configured in such way that they are locked in themselves, unable to move.
But all other states will move and change so that energy is radiated in the
most efficient manner.

A real state [¢] is stationary precisely when it is a critical point of the energy
observable eg. This is the same as being a zero of the energy gradient and is
also equivalent as the real wave function ¢ being a real eigenfunction of the
Schrodinger eigenvalue equation; see section 2.6. Therefore [¢] is stationary
if and only if ¢ = ¢, is a real valued eigenfunction.

The stationary energies of the system are by definition the energies of the
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stationary states, but these are just the eigenvalues of equation 15 (or 16),
section 2.6. The eigenvalues are exactly the same of section 2.10 and therefore
they can be enumerated

<M< X<... <A\ <...<0

resulting in a corresponding enumeration of stationary states

W)O]v[¢1]7[¢2]7"'7[¢n]7"' (19)

The real eigenfunctions are almost, but nor exactly, the same as complex
ones. In fact, important differences between the real and complex rays have to
be taken into account if an external magnetic field or other types of symmetry
breakdowns are considered. These are treated in [PST].

The following is helpful heuristics: Visualize the space of states as a surface
of infinite genus, with states corresponding to surface points, the energy as
a real valued function defined on the surface and excited stationary states as
saddle points. The energy gradient will be a field of vectors tangent to the
surface, orthogonal to the level lines and pointing downward. The evolution
can then be thought as movement of points along the flow lines defined by
the vector field.

Some additional terminology will be of help at this point. A state is quasts-
tationary if it is not stationary but is close to an excited stationary state. In
other words, quasistationary states are perturbations of excited stationary
states. They form neighborhoods of the saddle points.

If the quasistationary state [z;m] is close to the stationary state [¢,,,] then
their total energies are practically the same and will be considered equal:

GH[J)m] = EH[Ibm] = —An-

Also, since quasistationary states are close to stationary ones, under the
real evolution they initially move very slowly and while they remain close
to the stationary state a negligible amount of energy is radiated. But a
faster movement eventually builds up and the radiated energy will suddenly
increase. The movement and energy radiation will reach a peak and afterward
will slow down as a new quasistationary state is reached.
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In more detail, suppose that an initial quasistationary state [IZJm] with energy
— A, evolves in time and results in a new quasistationary state [l/N)k] with en-
ergy —Ar. What is in fact physically measured in this situation is the radiated
energy difference AN = Ay — A,,,. Therefore it will look as if a transition from
the stationary state [¢,,] to the stationary state [¢x] had occurred. Strictly
speaking stationary states do not move and cannot undergo transitions; the
nearby quasistationary states are the ones that effectively change.

However it can be said, and will be said in situations involving quasistation-
ary states, that a transition from the stationary state [1,,] to the stationary
state [¢x] has happened. Transitions involving only two stationary states or
energies will be called simple. If three stationary energies are involved then
the transition is double, and similarly there are triple transitions, etc. tro
be called multiple. These transitions between stationary states, both simple
and multiple, are exactly the kind of evolution predicted by equation 18.
Starting with a quasistationary state the system will make transitions from
one stationary state to another until the ground state is reached. And this
process is a direct consequence of the evolution equation in the continuous
and deterministic manner of classical theories.

In absence of external perturbations the transitions are determined by the
initial state. But arbitrarily small changes in the initial condition can result
in large, often qualitative, differences in the evolution of the state. This is
the already mentioned phenomenon of sensitive dependency on initial condi-
tions or chaos which explains, from a continuous and deterministic viewpoint,
certain aspects of transitions so far considered by quantism as intrinsically
random phenomena.

The following is illustrative. An excited stationary state has an infinite life-
time but if it is perturbed then the resulting quasistationary state has a finite
lifetime. Also, a small change in the perturbation can result in a large change
in the lifetime. In particular, quasistationary states that are relatively close
to stationary ones will have a relatively long lifetime, independently of the
transition energy (see sections 4.7 and 5.13 for a precise definition of life-
time.) In well controlled experimental situations is possible to increase in
a large amount the lifetime of highly excited stationary states, against the
quantum theoretical prediction that ‘larger energies imply shorter lifetimes.’
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Quasistationary states with higher excitations not only have a variable life-
time but can also make transitions towards any of a set of several quasista-
tionary states with lesser energy; towards which one of these the evolution
will occur is also a process with sensitive dependency in initial conditions.
Again chaos is present.

For example, assume that three stationary energies —Ap < —A,,, < —A,, are
involved. Certain initial quasistationary states with energy —A, will result
in a transition to a quasistationary state with the lowest of the three energies
— A while others will result in transitions to one with intermediate energy
—Am. In the last case, after certain relaxation time during which the state
remains quasistationary, further evolution will result in a second transition to
the lowest energy —\x. The evolution that actually occurs varies, possibly in
a considerable manner, if the initial quasistationary state undergoes a small
change. The same situation arises when more than three stationary energies
are involved. The relaxation time considered itself is sensitively dependent
on the perturbation.

Summing up, the real evolution equation predicts transitions between quasis-
tationary states with variable lifetimes and variable intermediate stationary
states. This is done within a deterministic and continuous context. From
the experimentally known physical behaviour of atomic systems these are ex-
pected predictions. Because Schrodinger evolution equation could not make
these predictions, quantism was created with its ad-hoc assumptions or ax-
ioms. These theoretical quantum appendages and some of their undesirable
consequences have been explained in Chapter 3.

4.5.-Stability of the ground state. If the electron and the nucleus at-
tract each other, why does the electron stops at the ground state instead
of attaining states with lower energy until the atom ‘collapses’ For realism
the answer is very simple. Considering the real projective space of states as
an energy well with a complicated architecture, no state has lower energy
than the ground state because the ground state is the bottom of the well.
It is the absolute minimum of the energy and lower energies are impossible.
Therefore, the stability of atoms can be explained by realism in the most
natural of the ways and without appeal to the rather suspicious uncertainty
principle.
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4.6.-Analysis of energy radiation. According to realism the atom radi-
ates energy as consequence of the way in wich states evolve. The radiated
energy Grqq(t) can be calculated as a function of time if the initial quasista-
tionary state is given. For simple transitions the radiated energy is a logistic
(sigmoid, smooth step) function. The logistically radiated energy function
has the following interpretation. There is an initial time interval with no
energy emmision; the length of this interval is the lifetime of the given ini-
tial quasistationary state. There follows a time interval where the system
starts to radiate, and then the amount of radiated energy increases in a sud-
den, albeit continuous, way. The emmision then slows down and eventually
the amount energy radiated becomes zero. The total energy emmited is an
eigenvalue difference AN = X\, — A,,.

For multiple transitions the radiated energy is in many cases a succession
smooth steps. However, cases do exist in which the radiation follows a more
complicated pattern and these will be discussed later.

4.7.-Energy pulses. The energy radiation can be further studied by means
of the rate of change of the radiated energy

gdt = dGraq

This quantity is the energy pulse, energy intensity, radiance or luminosity of
the transition.

For simple transitions the energy intensity ¢ is a smooth wavelet. As a func-
tion of the time variable ¢t this wavelet has the following properties. During
the time interval corresponding to the lifetime of the initial quasistationary
state the pulse is nil. Afterwards there is a sharp increase of g until a peak
energy intensity is reached; the pulse then diminishes and finally becomes nil
again. The energy carried by g is

/ gt = Graa(00) — Graa(—00) = A

which is the transition energy. Also, the peak or amplitude of ¢ can be
calculated and turns out to be equal to (AX)?/A.

Most of the radiation occurs during a time interval around the peak instant.
To determine this interval consider a square wavelet w in time variables ¢t that
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approximates ¢ and which is defined as follows: w is centered at the peak
instant and has the same amplitude and carries the same amount of energy
as g. It then follows that w is constant equal to the peak value (AX)?*/h
over a time interval of length AA/h. It is during this interval that most of
the transition energy is emitted. Let therefore the interval length AX/h be
defined as the transition time. Note that during the evolution there is, before
the transition time, a variable lifetime of the initial quasistationary state.

If a decreasing sequence of stationary energies is specified there will be initial
quasistationary states with energy pulse equal to a succession of simple en-
ergy pulses, each simple pulse corresponding to a simple transition. However,
there are the ‘anomalous’ cases that have a more complicated energy pulse.

4.8.-Einstein formula. Assume that the energy radiated during simple
transitions is carried away as a photon. The photon will be assumed to be a
three dimensional electromagnetic wavelet and the only relevant physical fact
to be used here is that it travels in space moving parallel, say, to the x—axis
with constant speed ¢ (there seems to be conflict with Maxwell equations but,
since photons do stay localized while traveling in straight line this just means
that Maxwell equations are inadequate for individual photons.) The energy
distribution along the x—axis direction is therefore g dx with x = ¢t. In space
variables z the maximum of ¢ is g = (AX)?/he. The photon wavelength is
naturally defined as A = AX/p and this is equivalent to Einstein formula

e
A

The energy density of the photon wavelet is concentrated near the maximum
(AX)?/he. Note that this maximum is proportional to the square (AX)?* of
the transition energy. This proportionality explains why photons with higher
energies have shorter wavelengths. Note also that for simple transitions there
is a single wavelet with a single peak and not several peaks as usually sup-
posed when dealing with the concept of wavelength. These considerations

A (20)

provide a partial resolution of the fine structure of photons.

For multiple transitions, if the energy pulse is a sequence of well separated
traveling wavelets then there will be a series of successive photons, each
satisfying 4.9.-1. The relaxation time separating the various pulses will be
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variable and the distance between the peaks is not in general correlated to the
wavelength. But in some ‘anomalous’ multiple transitions Einstein formula
(20) does not hold; in such cases the photons have a maximum energy density
less than (AM)?/h. Equivalently, these photons have a wavelength longer
than expected for their energy.

The previous discussion implies that realism has the conceptual simplicity of
Schrodinger theory, obtains the same stationary energies and also essentially
the same stationary states. Realism explains transitions as deterministic,
continuous processes consistent with variable lifetimes and variable interme-
diate quasistationary states. Realism predicts the stability of the ground
state from the kinematics and the evolution law and can deduce and inter-
pret Einstein formula. Additionally, realism defines with precision radiated
energy, radiated energy pulses, lifetimes and emission times and partially re-
solves the fine structure of photons. Furthermore, realism avoids the concep-
tual and logical complications of quantism, providing a much more natural,
reasonable and understandable description of basic physical phenomena.

4.9.-Assessment. From a rather general perspective realism is an attempt
to provide a simple and natural description of basic atomic phenomena. If
quantum formalism and the initial history of quantism are reexamined, an
initial mathematical accomplishment that turned into a major difficulty can
be identified. The acomplishment is Schrodinger eigenvalue equation which,
in view of its spectrum and eigenfunctions, is obviously relevant to atomic
phenomena. The difficulty is Schrodinger evolution equation that does not
predict transitions.

If the evolution equation is to be related to the eigenvalues and eigenfunc-
tions then equation 17 above is a natural candidate. But as it stands it does
not predicts transitions and, still worse, non-zero states diverge towards in-
finity. Therefore Schrodinger was forced to introduce the imaginary unit that
appears in equation 10, section 2.10. This resulted in an energy conservative
system of the kind appearing in Hamiltonian classical mechanics with the
virtue that states no longer diverged towards infinity; rather, according to
quantism states oscillate. But the conservation of energy implied by quan-
tum evolution also meant that transitions could not be predicted. Quantum
theorists then proposed the non-deterministic quantum jumps explained in
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Chapter 3.

The alternative presently proposed by realism is to keep equation 17 and
renormalize all states. The global renormalization is the passage from wave
functions to their associated rays and implies a delinearization of the space
of states. This predicts transitions and preserves (or reinstates) continuity
and determinism.

4.10.-Role of Topology and Global Analysis. The heuristical remarks
in section 4.4 can be given more content as follows. Projective spaces con-
structed from spaces of wave functions can be thought as infinite dimensional
objects with a complicated architecture. To illustrate the sense of this state-
ment consider that a plane, a sphere, a torus (surface of a ring), a double
torus (surface of two welded rings or of a solid figure eight), a triple torus
(surface of three welded rings), etc. are two dimensional objects with increas-
ingly complex architectures; the plane is the simplest and being flat is devoid
of architectural richness. The geometric qualities behind this architectonical
complexity can be given mathematical content by introducing the fundamen-
tal group or I1-dimenstonal homotopy group. Other mathematical apparata
created for similar purposes are the homology groups in dimensions 0, 1, 2
and the cohomology groups, also in dimensions 0, 1, 2; a further arabesque
is added by the fact that these homology and cohomlogy groups can be con-
structed using various types of coefficients. The above groups count holes
and twisting in the surfaces, this subject being one of the basic topics in
Algebraic Topology.

The notion of surface can be generalized to higher dimensions including in-
finite dimensions; the resulting objects are called manifolds. The projective
spaces of quantism and realism are examples of infinite dimensional mani-
folds. Similarly there are higher dimensional homotopy and homology groups
that count higher dimensional holes and twisting. Calculations can be per-
formed then to show that the infinite dimensional projective space has ho-
mological and cohomological holes and/or twisting in an infinite range of
dimensions; this gives mathematical substance to the affirmation that they
have a complicated or rich architecture. By contrast, in all positive dimen-
sions the homotopy, homology and cohomology groups of linear spaces are
always zero. This means that linear spaces have neither holes nor twisting.
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A branch of Differential Topology known as Morse theory establishes a con-
nection between the cohomology groups of a manifold and the critical points
of numerical valued functions with domain the manifold. Since the real pro-
jective space (and the complex projective space as well) has non-zero coho-
mology in an infinite range of dimensions, real valued functions are generically
expected to have infinitely many critical points and values. This is the case
with the energy map ey whose critical points are of the form [¢,], with ¢; an
eigenfunction and with critical values the eigenvalues A; of Schrodinger op-
erator. Therefore, from the viewpoint of Morse theory, stationary states and
stationary energies of atoms are forced by the topology of the domain. Still
more, they will persist if the system is perturbed. Therefore the existence
and persistence of energy eigenfunctions and eigenvalues can be considered as
a consequence of the topology of the space of states, as previously indicated.

The topology of projective spaces provides a basic understanding of the kine-
matics of both quantism and realism. But the eventual goal is to clarify the
dynamics of the systems under study and this is done with the methods and
results of the theory of Dynamical Systems and the closely related Global
Analysis. These provide the general setting of infinite dimensional symplec-
tic and riemmannian manifolds as well as the concepts of vector fields, flows,
critical points, stable and unstable manifolds, etc. necessary to orient and
carry on a development like the present one. More formal statements can be
found in section 5.15.



God is subtle, but He is not malicious.

Albert Einstein
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CHAPTER 5

ELEMENTARY REAL AND QUANTUM FORMALISMS

This Chapter explains explains both quantism and realism at an elementary
but more formal level than Chapters 3 and 4. It has been made largely
independent of the previous material by repeating whenever necessary argu-
ments or definitions already considered. This produces redundancies, but is
convenient for readers already familiar with quantum theory that may prefer
to skeep the first four chapters. The exposition underlines on one hand the
existing parallelism and on the other hand the differences between quantism
and realism.

5.1.-Terminology. The inner product of the complex valued functions ¢» =
Oz, y,2) ¢ = dx,y,2)is (¥, ¢) = [Ypdrdydz which in case the functions
are real valued reduces to [¢dx dydz. The norm of ¢ is ||¢| = (0, ¥)/?
and v is square integrable if ||| < oco. The functions ¥, ¢, etc. will be as-
sumed always square integrable. The collection of all complex valued square
integrable functions defined on R? is a linear space. More precisely, the op-
erations of sum of functions and product of scalars and functions give rise
to a complex vector space that together with the inner product is a complez
Hilbert space . This space is customarily designated as LE(R?) but in this
discussion will be denoted E€. Similarly, the set of all real valued square
integrable functions defined on R® together with the real inner product is a
real Hilbert space to be denoted E. A square integrable function v is nor-
malized if ||| = 1. Convergence or limits of sequences of functions and of
parametrized families of functions are with respect to the norm defined by
the inner product.

Recall that a number X is an etgenvalue of a linear operator operator H if
there exists a non-zero element 1 in the domain of H such that Hy = .
Let V? = 0%/02* + 0*/0y* + 0?/0z* be the Laplace operator in R?, U a

potential, Coulomb potential say. The Schrodinger self-adjoint hamiltonian
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operator H = —V? + U with real negative eigenvalues
—“d <M <... <=\ <...<0

can be considered as an operator on complex functions or as an operator
on real functions. For the sake of clarity HC will denote the Schrédinger
operator acting on complex valued functions and H will be the operator
acting on real ones.

In the complex case the eigenspaces are
FP={y:R° = CIH Y; = —A\ji;}

forming a sequence FOC, FIC, ceey FE, ... of mutually orthogonal complex vec-
tor subspaces of E€. The non-zero functions Y; € ch are complex eigenfunc-

tions of the eigenvalue —A;.

In the real case the eigenspaces are
F]‘ = {1[) : RS — R|H¢] = —)\]ﬂ)]‘}

and these form a sequence Fy, Fy,..., F,,... of mutually orthogonal real
vector subspaces; the real eigenfunctions of the eigenvalue —A\; are the non-
zero elements of F;. Note the contention F; C ch. Also, if ¥ = Rp +:13¢ is
a complex eigenfunction of —\; then, if the real and imaginary parts £, S
are non-zero, they are real eigenfunctions of —A;; equivalently ch C Fj+1F;.

It will be also assumed that the eigenspaces form a complete family; this
means that any square integrable function v is a series of eigenfunctions
b= ) U
0<j<o0

with ¢, € ch (complex case) or ¢; € F; (real case). For a given ¢ each 1,
in the above sum is uniquely determined; it is the j-th component of of .
Generally %; is not normalized. In order to explicitly find the j-thcomponent
assume first that the j-theigenspace has finite dimension n; and let g/)]l, ceey g/);”
be an orthonormal basis. Then t; is the finite sum ¥; = 3=, < <, (¥, 95)¢5.
At the level of rays one has

[Wl=1> ¥

0<j<o0
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If n; = oo a similar procedure applies and ; is then a series instead of a
finite sum.

Quantum formalism

5.2.-Quantum states. By definition quantum states correspond with the
complex rays (or Hilbert rays )

] ={ A e C}

Here ¢ : R® — C is non identically zero, complex valued and square inte-
grable, that is, » € E€ — {0}. The quantum space of states is the set of
all complex rays or complex projective space associated to E€ and denoted
PEC. Since [¢] = [¢/||¥]|], states can always be represented by normalized
functions. The sum of functions ¥ + ¢ is defined as usual but the sum of
of states cannot be defined since the expression [t) + ¢] depends on choices.
More precisely, [¢] = [A] and [¢] = [pi] for all non-zero A and u, but
[V + ¢] # [A) + ug] whenever [0] # [¢]. Therefore states (rays) cannot be
added and the space of states PE€ is a nonlinear space. Addition of quantum
states cannot be well defined and therefore is an inconsistent mathematical
operation.

Remark: The standard quantum mechanical paradoxical and paradigmatic
interpretation of double slit diffraction is based in the above inconsistent
mathematical manipulation.

Complex rays obey the following formal manipulation rules:

.- Invariance under multiplication by complex scalars: [¢)] = [A] for all

0#£XeC.

2.- Limits of sequences: The sequence of states [¢)(")] converges to the state
[4], denoted lim,,_.[1)("] = ] if there is a sequence A of complex scalars
such that the sequence of functions A (™ converges to the function .

3.- Limits of functions: If ¥(s) = (s, z,y,2),¥(s) : R® — C is a function
that depends on the parameter s then the equality lim,_,[¢0(s)] = [¢] holds
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in PEC whenever there exists a complex scalar A(s) depending also on s
such that, as functions, lims_s, A(s)¥(s) = ¢ holds.

5.3.-Quantum energy observable. It is usually stated that in quantism
the energy observable is the Schrodinger Hamiltonian operator HC. But
observables are real valued functions of state, therefore the quantum energy
observable is not the operator but rather the expression

(HCY, )
o=

defining a function ey : PE€ — R. In quantism this formula is known as
normalized mean value of the energy . If ||| = 1 and @ is expressed as a
sum of eigenfunctions ¢ = > o< ;<o ¥; then

enl] = D =Xllvl°

0<j<o0

5.4.-Quantum dynamics. Quantum states move according to Schrodinger
evolution equation, which expressed at the level of functions is
oy

o = (1/h)H

where A is Planck constant and @ is the imaginary unit ¢ = —1.
An initial state [¢] = [¥(©)] = [Co< <00 1] becomes, after time ¢, equal to

[ =1 32 exp(=(i/R)Ajt)e)]

0<j<o0

In particular, [¢] is a stationary state (fized point, critical point) if and only
ity =9;€ ch for some j, that is, if and only if ¢ is an eigenfunction.

As a consequence of this evolution equation the energy is constant along
trajectories: eg[v®] = ey[1)(9)] for all t. Therefore the quantum evolution
law implies that energy is not radiated and in particular there are no transi-
tions between stationary states. Historically this lack of concordance between
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theory and physical facts led to the probabilistic quantum jumps and other
typically quantum concepts.

5.5.-Interpretation and quantum jumps. Quantum jumps are intro-
duced as follows. Let ¢ be an eigenfunction and n = 37, ¢; a small
vector, ||n|| = €, so that [¢)] = [¢»r + n] can be considered a perturbation
of [¢k]. Assume further that ¢ is normalized, ||| = 1, and let ¢, be the
m — th-component of ¢». Then, the probability of a sudden, random, discon-

tinuous quantum jump from the state [¢] (which is close to the stationary
state [¢x] and has energy close to —A; ) to the eigenstate [¢),,,] with energy
—Am is the number [|¢,,]|* = (¥, ¥m). If the quantum jump occurs then a
photon with energy A,, — Ay is emitted.

Within the same random circle of ideas the amplitude ||* of a normalized
wave function ¢ is interpreted as a probability density. If V is a volume in
three-dimensional space then the probability of finding inside V' the particle
described by means of the wave function v is [, |¢/|* dz dy dz. Several versions
or variants of this interpretation can be found in the abundant quantum
literature.

Real formalism

5.6.-Real states. Real states are the real rays

[¥] = { A € R}

where 1) : R®> — R is a non-zero real valued function that is also assumed
to be square integrable. The real space of states is the set of all these real
rays or real projective space associated to E and denoted PE. As is the case
with the complex rays, the sum of real rays cannot be defined and the real
projective space is nonlinear. The following formal rules for real rays are
similar to the ones for complex rays.

1.- Invariance under multiplication by real scalars: If 0 # A € R then [Ay] =
[¥].
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2.- Limits of sequences: Let [1/(")] be a sequence of real states; this sequence
converges to [¢] if there is a sequence A" of real scalars such that the se-
quence of functions A" converges to to the function .

3.- Limits of functions: If ¥(s) : R® — R is a function that depends on
the parameter s then lim,_, [10(s)] = [¢] if there exists a real scalar A(s)
depending also on s such that lims_s, A(s)¥(s) = ¢

5.7.-Real interpretation. Since real rays [¢)] are dimensionless ratios no
interpretation is in principle required. However rays can be interpreted as
relative space unhomogeneities and the wave amplitude 1)? can be interpreted
in the way originally proposed by Schrodinger, that is, as a relative charge
density. See section 5.2.

5.8.-Real energy. The real energy observable is the same expression as in
the quantum case. The energy of the real state [¢] is

enly] = (HY, )/ (4, )

But note that [¢)] is now a real state, not a quantum state and therefore the
real energy is a function with domain the real projective space ey : PE — R.
Again, if ¢ is normalized and expressed as a sum of (real) eigenfunctions

[¥] = Eogj<oo[1/)j] then
enlvl= D =Nl

0<j<o0

and if [¢] = [¢,] is stationary then eg[;] = —A,.

5.9.-Real dynamics. At the level of functions the real evolution equation

is
% = (<2 21)
ot
Note the absence of the imaginary unit @ typical of the quantum evolu-
tion and that the equation is dimensionally correct. A function initially
equal to v = @ = Yo0<j<co ¥j evolves to become in time ¢ equal to
P = Y 0<i<on exp((2/h)M;t)b;. But since physical states are not given by
functions but rather by the real rays, the physically relevant evolution occurs
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at the level of rays . Therefore a real state initially equal to [¢(°)] becomes,
after time t, equal to

[WO1=1 30 exp((2/h)Ajt)y)]

0<j<o0

Hence [¢] is a stationary (motionless) real state if and only if [¢] = [¢)]
with [¢;] € PF; for some j. For the purpose of a realistic description of
microscopic phenomena the real evolution equation is always understood as
an evolution equation in the space of real states, that is, in the projective
space associated to the space of real wave functions.

5.10.-Energy radiation. Consider an initial state [¢)(°)] with real trajectory
[¢v®] € PE. The real energy of [¢®)] is given by

(HYO, )
(00, 0]

With this formula energy radiation can be deterministically studied.

en[p™] =

A direct calculation shows that

d
%GHW(”] <0

and furthermore the above expression equals 0 only if the initial state [¢)] =
[4(9)] is stationary. Therefore, for real systems, non-stationary initial states
radiate energy and stationary initial states have constant energy. Actually
the energy of a stationary state is constant because the state itself is mo-
tionless. However, except for the ground state, these stationary states are
unstable, as will be shown in the next section.

Meanwhile, let [¢)] = [¢(®)] be an initial state evolving into [¢/()] after time
t. Then the energy of the system at time ¢ is

Gays(t) = enl")]
and the energy radiated up to time t equals

Grad(t) = Gsys(o) - Gsys(t)
= en[p] — en[ypV)]
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so that
Gays(t) + Graa(t) = en[tp?)]

= constant

which expresses the principle of conservation of energy.

The energy intensity (power, luminosity ) at time t of the energy radiated by
the system is the time derivative

g(t) = G;ad(t)

This magnitude will later enter in the deduction of Einstein formula. Note
that, in contrast with the real theory, quantum mechanical radiation cannot
be obtained from the evolution equation.

5.11.-Two-level transitions. Consider now eigenvalues —\g < —A; < 0
with normalized eigenfunctions g € Fy, ¢y € Fi, and let AX = Mg — A\ be
the transition energy. The function ¥ = g + ¥ is a superposition of two
eigenfunctions and defines a non-stationary real state to be taken now as
initial state [¢] = [(9] = [1bo + ¥4]. This gives to the system a radiated
energy function

Graalt) = Groy(t)

Aoexp((4/h)Xot) + Aexp((4/h)Mt) Ao+ N
cepl(RAaf) + exp((RIN D)~ )

A+ doexp((4/R)AX)  Xg 4+ N
L+ exp((4/h)AMt) 2

and an energy pulse
g(t) = ¢

i : )
- h exp((2/h)AXt) + exp(—(2/h)ANT)

The maximum value (AX)?/h of the energy pulse occurs at at ¢ = 0. This
maximum or energy intensity peak is also the amplitude of the energy pulse.
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Consider now a new initial state obtained by applying a time shift s to the
initial state above, that is, let

O] = [(%o+v1)")]
[exp((2/h)Aos)to + exp((2/h)Ais)i]
= [0+ eaxp((2/h)5As)i]

The corresponding radiated energy and energy intensity are

Grad(t) = GUL(1) = GOt — s)

and

9(t) = g¥(t) = ¢t — 5)
But for any pair of coefficients « , 3 such that a3 > 0 the state ['z;(o)] =
[athg + B1] = [to + |B/a| 1] is such a time shift with

h
s = E(log la| —log|3])

(if af < 0 recall that —t; is also an eigenstate and use [a)g + (1] =
[0 + |B/c| (—¢1)]). Hence, for two-level transitions an appropiate choice of
« and (3 places the energy peak at any desired time s.

Note that for large negative values of s the shifted state [1)(9)] = [(vo + ;)]
is close to [¢] and for large positive s it is close to [1)g].

5.12.-Einstein formula. The physical assumption will now be made that
the energy radiated by the system occupies a volume in space and travels as
an energy wavelet that moves parallel to a straight line with constant speed
c. This is the energy carried by a photon.

With notation as in the previous section assume without loss of generality
that « = # = 1. The pulse wavelet ¢g(t) can be approximated by a square
wavelet with the same amplitude ¢(0) and carrying the same total energy as
g(t). The emission time of a the energy pulse is then

1 oo Gmd(oo) — Gmd(—oo) AX h

T m/—w glt) dt = 9(0) ~g(0) AN
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with emmision time interval —7/2 <t < 7/2 (or —s(—7/2) <t < —s+
(7/2) if there is a time shift s). Therefore the wavelenght A of a photon is
given by

A=71-c

Example: if A = 60004 then 7 = 2- 107> seconds.
Since g(0) = (AX)*/h it follows that

e

A\
A

which is Einstein formula relating the energy and wavelenght of a photon.
A crucial fact in this deduction has been that the amplitude of the energy
intensity is proportional to the square of the transition energy, a fundamental
physical consequence of real wave theory. The formula was postulated by
Einstein based on experimental results dealing with the photoelectric effect.
It was also incorporated into quantism, but as a postulate rather than as a
corollary deduced from first principles. For two-level transitions it has been
easily obtained from realism. The more general case of multiple transitions
will be discussed below in section 5.14.

5.13.-Further consequences. The emission time and emission intervals
deterministically defined above for individual two-level transitions are fun-
damental physical quantities unobtainable by quantism. Also, the lifetime
T of a given two-level initial state [)(9] = [anby + (B¢/1] is now definable as
T = s — 7, giving a measure of the time it remains in the initial station-
ary energy level. In a statistical situation the lifetimes will have a certain
distribution that will depend on the distribution of the initial states. This
illustrates how random physical quantities arise in a natural way from the
deterministic equations of real wave theory.

Some additional calculations can be instructive. Assume, again without loss
of generality, that @« = 3 = 1. The fraction of the transition energy A\
radiated during the emmision interval —7/2 <t < 7/2is

Grad(~7/2) = Graalr/2) _ 2 —1 _

A\ e2+1

76
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independent of AX and more generally for the time interval —n7/2 < ¢t <
n7 /2 the fraction is

Grad(_nT/:z) — Grad(nT/Q) €2n —1

A) e +1
Also, comparing ¢g(0) with g(rn7/2) gives the energy pulse decay

g(nt/2) 1 —4n

= ~ €

S0 ey
In particular g(7/2)/g(0) = .018

5.14.-Multiple transitions. Multiple transitions refer to initial states that
emit several succesive photons. Consider a finite set of eigenvalues of H,
say —Ag < Ay < ... < A, < 0, and let ¢y,%;,...,%, be given instants in
time. From the previous section it follows that there are eigenfunctions
Yo, ¥1,. .., ¥p and initial states [Vp] = [ap¥p + Bptp-1]; [p—1] = [op-1¥p-1 +
Bp—1p—2], ..., [¥1] = [@1t1+ B1tbo] at time t = 0 such that the corresponding
energy intensities g,(t), gp—1(t),...,¢1(¢) attain their peak at ¢,,t,-1,...,%
respectively.

Since the transitions are succesive it is natural to assume that 0 < ¢, <
tp—1 < ... < t1. Furthermore, the system should relax (become stationary)
after each transition and before the next one. This requires a certain time
lapse between transitions, for example, t, > 7, and t; —t;_1 > 7,4+ 7,_1,p <
7 < 1 suffices; in this regard let D denote the smallest of the quantities
ti—tjo1—(rj+7-1),7=p,p—1,...,1. Under such conditions

'lg:l/:p+1/;p—l‘|‘---‘|"l;1

is a linear combination of eigenfunctions such that for the initial state [¢}]
the energy intensity satisfies g(¢t) = ¢,(t) + gp-1(t) + ... + q1(t) up to a
term that decays exponentially with D. Therefore ¢(t) is a superposition of
non-overlaping two-level transitions, each satisfying Einstein formula.

On the other hand, if the relaxation conditions do not hold, say D < 0, then
some pair of succesive energy pulses will overlap non-linearly. If the overlap is
only partial the individual pulses that form the wavetrain g(¢) will not satisfy
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Einstein formula. The corresponding photons will have a longer wavelenght
and smaller energy intensity peak than expected from its energy in the two-
level case. But as the overlapping increases the wavelenght becomes shorter
and eventually there will be, instead of a pair of pulses that do not satisfying
Einstein relation, a single one satisfying it.

5.15.-Mathematical properties of spaces of states. The following ad-
ditional information about PEC and PFE is more technical and not essential
for the previous exposition. Use is made of concepts from Global Analysis
and Algebraic Topology.

1.- Local structure of PEC: The quantum mechanical space of states is a

smooth connected Hilbert manifold modeled on hyperplanes of the complex
Hilbert space E€.

2.- Symplectic structure of PEC: The complex projective space admits a
natural symplectic 2-form. In fact PEC is in a natural way a Hermitian and
Kahler manifold and the corresponding symplectic form is the imaginary part

of the Khaler form.

3.- Homotopy groups of PEC: The Hopf bundle is a principal bundle over
PEC with fibre the circle group and total space the infinite dimensional
unit sphere of EC: this sphere is contractible. From the exact homotopy
sequence for fibrations it follows that the homotopy groups of PEC are Z in
dimension 2 and trivial elsewhere. This means that PEC is an Eilenberg-
MacLane space K(Z,2). From standard obstruction theory it then follows
that PEC is a classifying space for 2-dimensional cohomology groups with
integral coefficients; in other words, for finite CW-complexes X the second
cohomology group with integral coefficients, H*(X;Z), is isomorphic to the
group of homotopy classes of maps [X, PEC].

4.- Cohomology algebra of PEC: An explicit presentation of PEC as union
of even dimensional cells can be used to prove that the cohomology algebra
of PEC with integral coefficients is a polynomial algebra over Z with one
generator ¢; of degree 2, that is, H*(PEC;Z) = Z[c,]. The generator ¢; €
HQ(PEC; Z) turns out to be the first Chern class of the canonical complexline
bundle v(E€) over PEC,
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5.- Complex line bundles and PEC: By direct geometric construction it
follows that, again for finite CW-complexes X, there is a natural isomorphism
between the group (under tensor product) of isomorphism classes of complex
line bundles over X and the group of homotopy classes [X, PEC]. Each
homotopy class [f] corresponds with the isomorphism class of the pull-back
by f of the canonical complex line bundle v(E©).

6.- Global properties of the quantum flow: Schroedinger evolution equation
in PEC is the Hamiltonian vector field of the energy map ey. A complete
global analysis of this flow is carried out [SDSQM]. All trajectories lie in
tori and the relative periods can be expressed in terms of the eigenvalues
providing a characterization of periodic and quasiperiodic trajectories.

7.- Local structure of PE: The space of real states is a smooth connected
Hilbert manifold modeled on hyperplanes of the real Hilbert space E.

8.- Riemannian metric on PE: The real projective space has a natural Rie-
mannian metric with geodesics the real projective lines (one-dimensional pro-
jective subspaces of PE).

9.- Homotopy groups of PE: There is a natural two-to-one map from the
infinite dimensional unit sphere of E to PE. Since this defines a covering
space and the unit sphere is contractible it follows that the homotopy groups
of PE are Z; in dimension 1 and trivial elsewhere. Hence, PE is an Eilenberg-
MacLane space K(Z2,1). From obstruction theory it can then be concluded
that PE is a classifiyng space for 1-dimensional cohomology groups with Zs
coefficients: H'(X;Z2) = [X, PE].

10.- Cohomology algebra of PE: An explicit presentation of PE as union
of cells provides the basis to conclude that the cohomology algebra of PE
with coefficients in Z; is a polynomial algebra over Za with one generator in
dimension 1: H*(PE;Z2) = Za[w;]. This generator wy € H'(PE;Z2) is the
Stiefel-Whitney class of the canonical real line bundle v(E) over PE.

11.- PE and real line bundles: There is a natural isomorphism between the
group of isomorphism classes of real line bundles over a compact CW-complex
X and the group of homotopy classes of maps [X, PE]. Each homotopy class



71

[f] € [X, PE] corresponds with the equivalence class of the pull-back by f
of the canonical real line bundle vy(E).

12.- Structure of the energy map: Both in the real and complex cases the en-
ergy observable ey is a smooth map with non-degenerated critical manifolds
(Bott manifolds) equal to the projective subspaces defined by the eigenspaces.
The normal bundle to these critical manifolds split into a stable and an un-
stable manifold. See [SDSQM]. If all eigenvalues are simple (have multiplicity
1) then each critical manifolds reduces to a critical point and the energy map
becomes a Morse map.

13.- Global properties of the real flow: The real evolution equation equals
(up to the factor —2/h) the gradient vector field of the energy map ey. This
flow can be completely analized as well. The asimptotic behaviour of all
trajectories can be explicitly given in terms of eigenvalues and component
eigenfunctions. For more details see [SDSQM].

As the above technicalities show, PEC and PE are well known and much
studied mathematical objects.
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APPENDIX

A practical way to grasp the results of section 5.14 on multiple transitions
is to run a program that numerically calculates G,.q4(t) and g(t). A sample
program for Mathematica is given below in the case of four energy levels,
heuristically a ‘four level atom’. A diagonalized 4 x 4 matrix plays the role
of the Hamiltonian operator and the program calculates the radiated energy
and energy pulse for this matrix. A hydrogen atom corresponds to an infinite
matrix that, when diagonalized, has diagonal elements equal to stationary
energies of the atom. The program can be easily modified to accomodate
more than four energy levels.

The initial state given in the program is a perturbation v = [¢b5] = (w0, x1, X, x3)] =
[(10727,107®%,0.06, 1)] of the stationary state [¢3] = [(0,0,0,1)] which has
‘highest energy’. The most instructive aspect is how the output changes

in response to small changes in the perturbation. Therefore, the program
should also be run with various other values of the perturbation [¢)3).

The program. To run the Mathematica program below just copy the code
to a Mathematica editor. The output sould be a smooth staircase with three
steps and a train of three wavelets of increasing amplitude and decreasing
wavelenght.

x0=10"(-27) x1=0.00000001 x2=0.06 x3=1 v={x0,x1,x2,x3} a0=10

al=a0/2 a2=a0/4 a3=a0/8 h={{-20,0,0,0},{0,-a1,0,0},{ 0,0,-a2,0

},{0,0,0,-a3 }}

ult]={{Exp[a0*t],0,0,0},{0,Explai*t],0,0},{0,0,Exp[a2*t],0},{0,0,
0,Expla3*t]}} x[t]l=ult].v medvall[t]=h.x[t]

medval [t]=medval[t].x[t] quadnorm[t]=x[t].x[t]

vm[t]=-medvall[t]/quadnorm[t] pulse=D[vm[t],t]
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Plot[%%-a3,{t,0,10},PlotPoints->500,PlotRange->{0,10},AxesLabel->
"Time, "Energy"}]

Plot[%%, [{t,0,10},PlotPoints->500,PlotRange->{0,14},AxesLabel->"T
ime,"Energy intensity"}]



