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ABSTRACT

INERTIA GROUPS OF MANIFOLDS

(A Dissertation presented to the Faculty
of the Graduate School of Arts and Sciences

of Brandeis University, Waltham, Massachusetts.)

by

Daniel Crespin Bryden

Inertia and concordance inertia groups of smooth manifolds are studied.

Geometric constructions, an invariant fR of Brumfiel and certain invariant
gR deduced from it are used.

It is proved that for any oriented smooth manifold M4n−1, the concordance
inertia group Ic(M

4n−1) is a proper subgroup of Θ4n−1, in fact, it does not
contain the Milnor sphere.

Then a certain pairing ρ̄n,k−1 with domain Θn × πn+k−1(S
n−1) and values in

Θn+k is constructed and related to concordance inertia groups.

There is always a manifold W n+k having concordance inertia group contai-
ning the image of ρ̄n,k−1. We prove also in a number of cases that the image
of ρ̄n,k−1 is away from bPn+k+1.



The author acknowledges the guidance and encouragement of his thesis ad-
viser Dr. Jerome Levine.
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Introduction.

In this work the inertia groups and the concordance inertia groups of mani-
folds are studied. This has been done previously in [Browder], [Brumfiel 3],
[Kosinski], and [Munkres 2]. Most results obtained here are about concor-
dance inertia groups. The techniques used are based on geometric arguments
and on the results of [Brumfiel 1, 2, 3]. The work is organized as follows.

In Chapter 1 preliminary material is presented. This consists of the following:
First, some well known properties of homotopy spheres. Then a brief review
of characteristic classes and numbers. Next a description of Brumfiel’s theo-
rems and his invariants, which are basic in this work. Finally, a theorem of
Anderson-Brown-Peterson is stated and Bredon’s pairing is described.

In Chapter 2 an integrality theorem —Theorem 6— for the index of certain
manifolds is proved using Brumfiel’s and Anderson-Brown-Peterson’s results.
By means of Theorem 6 a certain invariant gR becomes computable in many
cases. Related results are proved.

In Chapter 3 piecewise differentiable (abbreviated PD) maps are discussed.
Next, inertia groups are defined and i-diffeomorphisms (see page 21) are
proved to exist. We give then upper bounds for the inertia groups of certain
manifolds (Proposition 14). Then concordance inertia groups are defined and
upper bounds are given for them. In particular it is proved that for any
closed orientable manifold M4n−1 the Milnor sphere, Σ4n−1

0 , is not in the
concordance inertia group Ic(M

4n−1).

In Chapter 4 a pairing ρ̄n,k is constructed. This is closely related to Bredon’s
pairing ρn,k, and to Milnor-Munkres-Novikov pairing τn,k. In Theorem 25 a
relationship is obtained between the image of ρ̄n,k and the concordance inertia
group of a manifoldW n+k, the relationship being homotopy theoretical. From
this it follows (Theorem 26) that the image of ρ̄n,k is always contained in
the concordance inertia group of some manifold. Finally, applying results of
Chapter 2, conditions on the image of ρ̄n,k are obtained which imply that
for certain values of n and k the images of ρ̄n,k and of ρn,k can be described
completely in homotopy theoretical terms.

Chapter 5, where proposition 18 is proved, is mainly technical.

Chapter 6 presents some low dimensional calculations.
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0.- Notation.

The notation used is standard:

Rn denotes n-dimensional Euclidean space.

Dn ⊆ Rn is the n-dimensional unit ball.

rDn is the n-dimensional ball of radius r.

Sn−1 ⊆ Rn is the (n− 1)-dimensional unit sphere.

rSn−1 ⊆ Rn is the (n− 1)-sphere of radius r.

Dn−1
+ = {(x1, . . . , xn) ∈ Sn−1|xn ≥ 0}

Dn−1
− = {(x1, . . . , xn) ∈ Sn−1|xn ≤ 0}

If X and Y are topological spaces, denote by [X, Y ] the set of homotopy
classes of maps from X to Y .

If X is a path connected space with base point x0 ∈ X, then πn(X) is the
n-th homotopy group of X.

SO(n) is the rotation group of Rn, SO(n) ⊆ SO(n+ 1) and

SO =
∞⋃

n=1

SO(n)

J = Jk,n : πk(SO(n)) → πn+k(S
n) is the J-homomorphism (see [Kervaire]).

If πS
k = ĺımn πn+k(S

n) there is defined a J-homomorphism

πk(SO)→ πS
k

Let Coker(Jk) = πS
k /Image(Jk).

tn is the integer

tn = 22n−2(22n−1 − 1) · an · numerator

(
Bn

4n

)
where Bn is the n-th Bernoulli number, an = 1 for even n and an = 2 for
odd n; see [Levine 2], page 22.

Let t′n be the largest odd number that divides tn. It follows from a theorem
of Von-Staudt (cf. [Levine 1]) that

t′n = (22n−1 − 1) · numerator

(
Bn

4n

)
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The term ‘piecewise linear’ will be abbreviated ‘PL’. For the definition of
PL isomorphism, PL ball, and other piecewise linear concepts see [Hudson].

All manifolds considered here are orientable, however, orientability will often
be stated explicitly.

References are made to author, with a number when necessary. For example
[Levine 2] refers to the second paper by Levine listed in the bibliography.
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1. Preliminary material

1.1.- Homotopy spheres.
Denote by Θn the group of h-cobordism classes of oriented smooth manifolds
which are homotopy equivalent to the sphere Sn, with the group operation
induced by connected sum.

Denote by Θn(1) the group of oriented diffeomorphism classes of smoothings
of Sn, the group operation is induced by connected sum.

Denote by Θn(2) the group of concordance classes of smoothings of Sn with
the group operation induced by connected sum.

Denote by Θn(3) the group of concordance classes of orientation preserving
diffeomorphisms from the sphere Sn−1 to itself under the operation induced
by composition of diffeomorphisms.

Denote by Θn(4) the group of concordance classes relative to the boundary of
orientation preserving diffeomorphisms f : Dn−1 → Dn−1 which are the iden-
tity on a neighborhood of the boundary ∂Dn−1 = Sn−2. The group operation
is induced by composition.

Homomorphisms that relate these various groups will be now described.

The obvious map Θn(1)→ Θn is a group homomorphism.

The map that assigns to a diffeomorphism class of smoothings the concor-
dance class of any of its representatives induces a well defined group homo-
morphism Θn(1)→ Θn(2).

For a homomorphism Θn(3) → Θn proceed as follows. If f : Sn−1 → Sn−1

is a diffeomorphism let Σf be the homotopy sphere obtained by gluing two
copies of the n disk Dn along their boundaries via the diffeomorphism f .
Then f → Σf induces a well defined group homomorphism.

Finally, given a diffeomorphism g : Dn−1 → Dn−1 which is the identity on
some neighborhood of the boundary, let λ : Dn−1 → Sn−1 be the embedding
given by

λ(x1, . . . , xn−1) = (x1, . . . , xn−1,
√

1− (x2
1 + · · ·+ x2

n−1)

and define

ḡ(y) =

{
λ ◦g ◦λ−1 (y) if y ∈ λ(Dn−1)
y if y /∈ λ(Dn−1)

The correspondence g → ḡ induces a well defined group homomorphism
Θn(4) → Θn(3). All these group homomorphisms are isomorphisms in case
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n ≥ 5. For more details see [Smale].

Recall now some well known facts about the structure of the group Θn.

Θn is an abelian group, finite if n 6= 3. Θ3 is unknown.

Let bPn+1 consist of those homotopy n-spheres which bound some paralleli-
zable (n+ 1)-manifold, then:

For n 6= 1, bP4n is cyclic of order tn (see page 5) generated by an element
Σ4n−1

0 called the Milnor sphere, which bounds a parallelizable manifold of
index 8.

bP2n+2 is cyclic of order at most 2. The order is 2 if n 6= 2i − 2. The order is
1 if n = 0, 2, 6, 14 or 30. The remaining cases are unsettled. In particular
bP8n+2 is cyclic of order 2; it has a generator Σ8n+1

0 called the Kervaire sphere,
which bounds a parallelizable manifold of Arf invariant 1.

bP2n+1 is trivial for all n.

For n 6= 2i − 2 there is an exact sequence

0→ bPn+1 → Θn
p′→ CokerJn → 0

Here p′ is induced by the Thom-Pontriagin construction. For more details see
[Kervaire-Milnor] and [Levine2].

1.2.- The signature, characteristic classes and characteristic
numbers.
Let M4n be an oriented closed manifold with orientation class [M4n] ∈
H4n(M4n; Q). On H2n(M4n; Q) consider the quadratic form defined by cup
product

(x, y)→ 〈x ^ y, [M4n]〉

The signature, or index, of M4n, s(M4n), is the index of this bilinear form.

This is an oriented cobordism invariant and

s(M4n
1 #M4n

0 ) = s(M4n
1 )− s(M4n

0 )

Let M4n be oriented with possibly non-empty boundary, ∂M4n, and orienta-
tion class [M4n] ∈ H4n(M4n, ∂M4n; Q). On H2n(M4n, ∂M4n; Q) consider the
quadratic form q : (x, y)→ 〈x ^ y, [M4n]〉. The one can extend the previous
definition to the relative case by setting s(M4n) =signature of q.

Let M4n
1 , M4n

0 be compact smooth manifolds and f : ∂M4n
1 → ∂M4n

0 be
an orientation preserving diffeomorphism. Denote by M4n

1

⋃
f (−M4n

0 ) the
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manifold obtained from the disjoint union M4n
1 +M4n

0 by identifying x ∈M4n
1

and f(x) ∈M4n
0 . Give to M4n

1

⋃
f (−M4n

0 ) the orientation induced from M4n
1 .

One then has ([Sullivan], p. 6.11)

s(M4n
1

⋃
f

M4n
0 ) = s(M4n

1 )− s(M4n
0 )

Also, if M4n
1

∐
M4n

0 denotes the connected sum along the boundary (see
[Kervaire-Milnor]) then s(M4n

1

∐
M4n

0 ) = s(M4n
1 )− s(M4n

0 ).

Let ξ be a vector bundle over a CW complex X. Then the i-th Stiefel-
Whitney class of ξ, wi(ξ) ∈ H i(X; Z2), is defined.

If Mn is a compact smooth manifold with tangent vector bundle τMn , the
i-th Stiefel-Whitney class of Mn is wi(M

n) = wi(τMn) ∈ H i(Mn; Z2). Note
that wi is defined for manifolds with possibly non-empty boundary.

It is possible to extend the definition of wi to include all closed topological
manifolds, in particular to include closed PL manifolds. This is done using
the Wu classes and Steenrod squares. Recall that a smooth or PL manifold
Mn is spin if it is orientable and if w2(M

n) = 0.

Let η be an oriented vector bundle over a CW complex X. Then the i-th
rational Pontriagin class of η, pi(η) ∈ H4i(X; Q), is defined.

If Mn is a compact oriented smooth manifold with oriented tangent vec-
tor bundle τMn then the i-rational Pontriagin class of Mn is pi(τMn) ∈
H4i(Mn; Q). The rational Pontriagin classes are defined for smooth mani-
folds with possibly non-empty boundary, and they can be defined on all
closed PL manifolds using Hirzebruch signature theorem (see [Milnor]).

Let M4n be a closed oriented (PL or smooth) manifold with orientation
class [M4n] ∈ H4n(M4n; Q). Consider partitions of n, i.e. finite sequences
ω = (i1, . . . , ir) of positive integers such that i1 + · · ·+ ir = n. Then there is
defined a corresponding Pontriagin number of M4n

pω(M4n) = pi1···ir(M
4n) = 〈pi1(M

4n) ^ · · ·^ pir(M
4n), [M4n]〉 ∈ Q

This rational number is an integer if the manifold M4n is smooth. These
numbers are invariant under smooth oriented cobordism. Also, if two clo-
sed PL manifolds are PL cobordant (in particular if they are isomorphic)
then they have the same rational Pontriagin numbers. Recall that a Pon-
triagin number pi1···ir(M

4n) is decomposable if r ≥ 2. Note that if M4n is a
smooth compact manifold with non-empty boundary, the above definition is
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vacuous since H4n(M4n; Q) is trivial. However, following [Ells and Kuiper]
it is possible to define decomposable Pontriagin numbers for certain mani-
folds with non-empty boundary. This is done as follows: Suppose M4n is a
smooth oriented manifold with boundary ∂M4n. If for 0 ≤ i ≤ n − 1 the
homomorphisms

j∗ : H4i(M4n, ∂M4n; Q)→ H4i(M4n; Q)

induced by the inclusion of pairs j : (M4n, ∅) → (M4n, ∂M4n) are isomorp-
hisms, define the relative Pontriagin numbers of M4n as

pi1···ir(M
4n) = 〈j∗−1(pi1(M

4n)) ^ · · ·^ j∗−1(pir(M
4n)), [M4n]〉 ∈ Q

where [M4n] is the orientation class of M4n in H4n(M4n, ∂M4n; Q). This
definition of Pontriagin numbers extends the previous one and applies when
∂M4n is a homotopy sphere.

These relative Pontriagin numbers have the following additive property: Let
M4n

1 , M4n
2 be compact smooth oriented manifolds for which relative Pontria-

gin numbers can be defined, then

pω(M4n
1

∐
M4n

2 ) = pω(M4n
1 )− pω(M4n

2 )

and if f : ∂M4n
1 → ∂M4n

2 is a diffeomorphism then

pω(M4n
1 ∪f M

4n
2 ) = pω(M4n

1 )− pω(M4n
2 )

1.3.- Brumfiel’s invariant and cobordism
Theorem 1: [Brumfiel 1] a) Let W 4n be a closed smooth spin manifold such
that all its decomposable Pontriagin numbers are zero, ie., pi1···ir(W

4n) = 0,
r ≥ 2. Then the index of W 4n, σ(W 4n), is a multiple of 8tn.
b) Let Σ4n−1 ∈ Θ4n−1 be a homotopy sphere, then there is a compact smooth
spin manifold M4n

0 with all its decomposable Pontriagin numbers zero and
such that ∂M4n

0 = Σ4n−1. Moreover, for any such M4n
0 , 8 divides the index

σ(M4n
0 ).

As a consequence of this theorem Brumfiel defines a group homomorphism

fR : Θ4n−1 → Ztn

as follows. Let Σ4n−1 ∈ Θ4n−1. According to Theorem 1 b) above there is
a spin manifold W 4n with all decomposable Pontriagin numbers zero and



Crespin: PhD Thesis 11

such that ∂W 4n = Σ4n−1. Set now fR(Σ4n−1) = 1
8
σ(W 4n) ∈ Ztn . This is well

defined by a). Note that if Σ4n−1
0 is the Milnor sphere then fR(Σ4n−1

0 ) = 1.
Therefore for n odd, fR|bP4n is an isomorphism. For n even Brumfiel proves
that fR|bP4n has kernel 0 or Z2. But since the order of bP4n is tn for all n
(see page 5) the kernel is always 0, not Z2.

Identify now bP4n to Ztn (sending Σ4n−1
0 to 1). Then there is a split exact

sequence

0→ bP4n

fR←→ Θ4n−1 → Coker(J4n−1)→ 0

There is also a group homomorphism

fR : Θ8n+1 → Z2

defined in [Brumfiel 2]. We quote also the following result [Brumfiel 3].

Proposition 2. a) If Σ8n+1
0 ∈ Θ8n+1 is the Kervaire sphere then

fR(Σ8n+1
0 ) = 1 ∈ Z2

b) Let W 8n+2
1 , W 8n+2

0 be compact smooth 1-connected spin manifolds with
∂W 8n+2

1 = S8n+1, ∂W 8n+2
0 = Σ8n+1 ∈ Θ8n+1. If there exists a PL isomorp-

hism of pairs
(∂W 8n+2

1 , S8n+1)→ (W 8n+2
0 ,Σ8n+1)

then fR(Σ8n+1) = 0.
c) Identify bP8n+2 to Z2 (sending Σ8n+1

0 to 1) then fR : Θ8n+1 → Z2 splits
the exact sequence

0→ bP8n+2

fR←→ Θ8n+1 → Coker(J8n+1)→ 0

Let Ωfr
∗ , ΩSpin

∗ and ΩSO
∗ denote the framed, Spin and oriented cobordism

rings ([Stong] and references quoted there), and let

Ωfr
∗

E∗−→ ΩSpin
∗

ΩSpin
∗

F∗−→ ΩSO
∗

denote the forgetful homomorphisms. It is well known that F∗ ◦G∗ = 0 in po-
sitive dimensions. The following result is taken from [Stong]; see also [ABP]:
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Theorem 3: (Anderson-Brown-Peterson) a) The homomorphism E∗ : Ωfr
∗ →

ΩSpin
∗ has image Z2 in dimensions 0, 8k + 1 and 8k + 2. The image is zero

otherwise.
b) The homomorphism F∗⊗1 : ΩSpin

∗ ⊗Z[1
2
]→ ΩSO

∗ ⊗Z[1
2
] is an isomorphism.

1.4.- Bredon’s pairing
There is a map ρn,k : Θn × πn+k(S

n) → Θn+k defined by [Bredon]. The
definition is as follows:
Let (Σn, α) ∈ Θn × πn+k(S

n) with Σn represented by a diffeomorphism h :
Sn−1 → Sn−1 and note that h can be assumed to be the identity outside
an (n− 1)-ball imbedded in Sn−1. Choose a framed submanifold 〈Mk, F 〉 of
Sn+k whose framed cobordism class corresponds to α. Take a closed tubular
neighborhood T of Mk in Sn+k and let f : Mk×Dn → T be a diffeomorphism
corresponding to the framing F . Form the disjoint union (Sn+k − intT ) + T
and identify x ∈ ∂T = ∂(Sn+k − intT ) to f ◦(1 × h) ◦f−1(x) where 1 × h :
Mk × Sn−1 → Mk × Sn−1. The resulting manifold is clearly a homotopy
(n+ k)-sphere and determines an element ρn,k(Σ

n, α) ∈ Θn+k. It is proved in
[Bredon] that ρn,k is well defined, as well as the following:

Proposition 4: (Bredon) a) If k − 1 < n then ρn,k is bilinear.
b) Let p′ : Θn → CokerJn be the map induced by Thom Pontriagin construc-
tion (see [Kervaire-Milnor]) and for k− 1 < n let c′ : CokerJn×πn+k(S

n)→
CokerJn+k be induced by composition, then the following diagram commutes:

Θn × πn+k(S
n)

ρn,k−→ Θn+k

p′ × 1 ↓ ↓ p′

c′ : CokerJn × πn+k(S
n)

c′−→ CokerJn+k

The condition k−1 < n on part b) is necessary to define c′ and to prove that
the diagram commutes.
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2. The invariant gR

2.1.- Definition of gR and byproducts
First we state and prove the following consequence of Theorem 3.

Proposition 5: Let W 4n be a closed oriented smooth manifold, then there
is some closed spin manifold X4n and an integer c ≥ 0 such that 2c[W 4n] =
[X4n] in ΩSO

∗ .

Proof: By Theorem 3, F∗⊗1 : ΩSpin
∗ ⊗Z[1

2
]→ ΩSO

∗ ⊗Z[1
2
] is an isomorphism.

Therefore there are spin manifolds X4n
i and numbers ai = mi/2

bi ∈ Z[1
2
],

i = 1, . . . , s, such that [W 4n] ⊗ 1 =
∑s

i=1[X
4n
i ] ⊗ ai in ΩSO

∗ ⊗ Z[1
2
]. If b is a

large enough integer then 2iai is an integer for all i. Therefore

2b[W 4n]⊗ 1 =
∑s

i=1[X
4n
i ]⊗ 2bai

= [
∑s

i=1 2baiX
4n
i ]⊗ 1

in ΩSO
∗ ⊗ Z[1

2
]. Let Y 4n be the spin manifold (disjoint union)

∑s
i=1 2baiX

4n
i ,

then (2b[W 4n]−[Y 4n])⊗1 = 0 in ΩSO
∗ ⊗Z[1

2
] hence 2b[W 4n]−[Y 4n] is a 2-torsion

element in ΩSO
∗ , that is, there exists some integer d such that 2b+d[W 4n] −

2d[Y 4n] = 0 in ΩSO
∗ . Take X4n = 2dY 4n and c = b+ d Q.E.D.

Let tn and t′n be as in pages 2 and 3.

Theorem 6: Let W 4n be a closed oriented smooth manifold with all decom-
posable Pontriagin numbers zero. Then t′n divides the index σ(W 4n).

Proof: By previous proposition there is a spin manifold X4n such that
2cW 4n is cobordant toX4n. Then σ(X4n = 2c σ(W 4n and pω(X4n) = 2c pω(W 4n) =
0. By Theorem 1, 8tn divides σ(X4n) and therefore t′n divides σ(W 4n) Q.E.D.

Proposition 7: Let W 4n be a closed oriented smooth manifold with all de-
composable Pontriagin numbers zero, then pn(W 4n) is a multiple of rn =
odd part of (2n− 1)! · denom (Bn/4n).

Proof: By the Hirzebruch index theorem (see [Hirzebruch], pages 12 and
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86)

σ(W 4n) =
22n(22n−1 − 1)

(2n)!
Bn · pn

=
4n 22n(22n−1 − 1)

(2n)!
Bn
4n · pn

=
22n+1(22n−1 − 1)

(2n− 1)!
num (Bn/4n)

denom (Bn/4n)
· pn

= 22n+1

(2n− 1)!
2ct′n

denom (Bn/4n)
· pn

=
22n+c+1 · t′n

2d · rn
· pn

= 22n+c−d+1 t
′
n
rn
· pn

From this one obtains

22n+c+d+1 · pn =
σ(W 4n)

t′n
· rn

By previous proposition σ(W 4n)/t′n is an integer, and since rn is odd it follows
that rn|pn Q.E.D.

Remark: rn ≥ (2n− 1) · (2n− 3) · · · 3 · 1.

Corollary 8: Let ∂W 4n
1 = Σ4n−1 ∈ Θ4n−1, where W 4n

1 is compact, oriented
and has all decomposable Pontriagin numbers equal to zero, then

8fR(Σ4n−1) ≡ σ(W 4n
1 ) mod t′n

Proof: Let ∂W 4n
0 = Σ4n−1 where W 4n

0 is spin and has all decomposable Pon-
triagin numbers 0 (see Theorem 1). Form the manifoldW 4n = W 4n

0 ∪f (−W 4n
1 )

where f : ∂W 4n
0 → ∂W 4n

1 is an orientation preserving diffeomorphism. Then
the decomposable Pontriagin numbers of W 4n are pω(W 4n) = pω(W 4n

0 ∪f

(−W 4n
1 )) = pω(W 4n

0 )− pω(W 4n
1 ) = 0− 0 = 0 and the index is

σ(W 4n) = σ(W 4n
0 )− σ(W 4n

1 )
= 8fR(Σ4n−1)− σ(W 4n

1 ) ∈ Zt′n
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By Theorem 6, t′n divides σ(W 4n), therefore 8fR(Σ4n−1) ≡ σ(W 4n
1 )mod t′n

Q.E.D.

It is always possible to define the following group homomorphism gR : Θ4n−1 →
Zt′n : For Σ4n−1 ∈ Θ4n−1 define gR(Σ4n−1) as fR(Σ4n−1) mod t′n, that is, as
the image of Σ4n−1 under the composition

Θ4n−1
fR→ Ztn → Zt′n

where the last arrow is the canonical projection.

Although gR is a coarser invariant than fR its significance stems from the
fact that, according to Corollary 8, gR(Σ4n−1) can be computed from any
compact oriented (not necessarily spin) W 4n

1 with boundary Σ4n−1. For any
such W 4n

1 one has

gR(Σ4n−1) = (1/8)σ(W 4n
1 ) ∈ Zt′n

Note that (1/8) ∈ Zt′n because t′n is odd. Also, if Σ4n−1
0 is the Milnor sphere

then gR(Σ4n−1
0 ) = 1.

It is possible to extend further the definition of gR as follows. Let M4n−1 be
a closed oriented smooth manifold satisfying the following conditions:

a) ∂W 4n = M4n−1 for some compact, oriented and smooth manifold W 4n.

b) Relative decomposable Pontriagin numbers of W 4n can be defined (see
p.17) and are all zero.

Define then

gR(M4n−1) =
1

8
s(W 4n) mod t′n

Proposition 9: The value gR(M4n−1) ∈ Zt′n depends only on the oriented
diffeomorphism class of M4n−1.

Proof: Let W 4n
0 , W 4n

1 be 4n-manifolds with ∂W 4n
i = M4n−1, i = 0, 1 and

consider any orientation preserving diffeomorphism f : M4n−1 = ∂W 4n
1 →

M4n−1 = ∂W 4n
0 .

Form the smooth oriented manifold W 4n = W 4n
1

⋃
f (−W 4n

0 ) then W 4n is clo-

sed, oriented and has decomposable Pontriagin numbers pω(W 4n) = pω(W 4n
1 )−

pω(W 4n
0 ) = 0− 0 = 0.

Theorem 6 states that σ(W 4n) is divisible by t′n and since σ(W 4n
0 )−σ(W 4n

1 ) =
σ(W 4n) and t′n is odd, it follows that (1/8)σ(W 4n

0 ) ≡ σ(W 4n
1 ) mod t′n, Q.E.D.
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Proposition 10: If M4n−1
0 , M4n−1

1 are bE4n manifolds then

gR(M4n−1
1 #(−M4n−1

0 )) = gR(M4n−1
1 )− gR(M4n−1

0 )

Proof: Let W 4n
0 , W 4n

1 be E4m manifolds with ∂W 4n
0 = M4n−1

0 , ∂W 4n
1 =

M4n−1
1 . ThenW 4n

1

∐
(−W 4n

0 ) has boundary ∂(W 4n
1

∐
(−W 4n

0 )) = M4n−1
1 #(−M4n−1

0

and therefore

gR(M4n−1
1 #(−M4n−1

0 )) = (1/8)σ(W 4n
1

∐
(−W 4n

0 )
= (1/8)σ(W 4n

1 )− (1/8)σ(W 4n
0 )

= gR(M4n−1
1 )− gR(M4n−1

0 )

Q.E.D.
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3. Inertia and concordance inertia groups

3.1.- PD maps .
We discuss here PD maps. For the definition of rectilinear cell complex,
smooth triangulation of a smooth manifold, etc. see [Munkres 1] Chapter 2.

Let K be a rectilinear cell complex, M , N smooth manifolds and α : K →
M a smooth triangulation. A map f : M → N is piecewise differentiable,
abbreviated PD on the triangulation α if f ◦ α : K → N is smooth on each
simplex of some subdivision K ′ of K. When there is no danger of confusion,
the triangulation α on which f is PD will not be mentioned explicitly.

The map f : M → N is a PD isomorphism if for some subdivision K ′ of K
the map f ◦ α : K ′ → N is a smooth triangulation of N

Let x0 ∈ Mn and let f : Mn → Nn be a homeomorphism with the property
of being a diffeomorphism on Mn − {x0}. If α : K → Mn is a triangulation
of Mn let K ′ be a subdivision of K such that α−1(x0) is a vertex of K ′ (such
triangulation always exists) then f ◦α : K ′ → Nn is a smooth triangulation
of Nn and therefore f is a PD-isomorphism on any α.

Let η : K → L be a PL isomorphism and β : L→ Nn a smooth triangulation
of Nn. There is a subdivision K ′ of K and a subdivision L′ of L such that η
carries each simplex s of K ′ onto some simplex t of L′ via a linear isomorp-
hism. Since β : L → Nn is a smooth triangulation it follows that β ◦η is a
diffeomorphism on each simplex σ of K ′. Therefore β ◦η is a diffeomorphism
on each simplex s of K ′ ([Munkres 1], 8.4).

Consider now triangulations

α : K →Mn, β : L→ Nn

Suppose that f : Mn → Nn is a map such that

η = β−1
◦f ◦α : K → L

is a PL isomorphism. By previous discussion it follows that

β ◦η = β ◦β−1
◦f ◦α = f ◦α : K ′ → Nn

is a smooth triangulation of Nn. Therefore f is a PD-isomorphism on α.

Let α : K → Mn, β : L → Nn be smooth triangulations. Any map
f : Mn → Nn induces a map fβ

α = β−1 ◦f ◦α : K → L between triangu-
lations. If f is a PD isomorphism between the manifolds (in particular if f
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is a diffeomorphism) then fβ
α is a PD-isomorphism between the complexes;

generally speaking fβ
α is not a PL map. However with arbitrarily small per-

turbations of β it is possible to obtain a PL isomorphism, and this can be
done without perturbing β on subcomplexes of K where β is already PL.
More precisely, assume that fβ

α is a PL isomorphism on some closed sub-
complex A ⊆ K and let B = fβ

α (A). Then, according [Munkres 1] 10.13,
there is for any δ > 0 a δ-approximation γ : L → Nn to β, which restric-
ted to B equals β, γ|B = β and such that fγ

α is a PL isomorphism. As a
consequence, if Mn and Nn are PD-isomorphic then they are PL isomorphic

3.2.- Inertia Groups.
For the remaining of this paper the manifolds Mn under study will be assu-
med to have dimension n ≥ 7. This requirement is necessary in order to have
fR to work and to be able to approximate certain maps by isotopies.

Consider the following particular presentation of the connected sum of a
closed connected smooth manifold Mn with a homotopy n-sphere Σn. Let

g : Sn−1 → Sn−1

be a diffeomorphism corresponding to Σn and let

ϕ : Dn →Mn

be an orientation preserving embedding with ϕ(0) = x0.

To define the connected sum Mn#Σn define an atlas on Mn as follows. On
Mn − {x0} take the atlas induced from the original smoothing on Mn. At
the point x0 consider the chart

ϕ ◦Cg−1
◦ϕ−1 : ϕ(Dn)→ Dn

Here
Cg−1 : Dn → Dn

is the cone extension of g−1 so that Cg−1 is a homeomorphism, smooth
except at 0 ∈ Dn. This chart ϕ ◦Cg−1 ◦ϕ−1 is compatible with the charts
on Mn − {x0}. So, we have an atlas on Mn and therefore a smoothing. The
topological manifoldMn with this smoothing is the connected sum ofMn and
Σn, denoted Mn#Σn. So Mn and Mn#Σn are the same topological space.

The identity map 1Mn : Mn → Mn#Σn is smooth except at x0 and is
therefore a PD-isomorphism in any triangulation α, and 1Mn ◦ α : K ′ →
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Mn#Σn is a smooth triangulation for some subdivision K ′ of K. If Mn is
diffeomorphic to Nn (abbreviated Mn ∼= Nn) then Mn#Σn ∼= Nn#Σn and
Mn#(Σn

1#Σn
2 ) ∼= (Mn#Σn

1 )#Σn
2 .

The inertia group of Mn, I(Mn), consists of those homotopy spheres such
that Mn ∼= Mn#Σn.

I(Mn) is certainly a group. For let Σn ∈ I(Mn), then

Mn#(−Σn) ∼= (Mn#Σn)#(−Σn) ∼= Mn#(Σn#(−Σn)) ∼= Mn#Sn ∼= Mn

so that if Σn ∈ I(Mn), then −Σn ∈ I(Mn)

Also, if Σn
1 , Σn

2 ∈ I(Mn) then

Mn#(Σn
1#Σn

2 ) ∼= (Mn#Σn
1 )#Σn

2
∼= Mn#Σn

2
∼= Mn

so that Σn
1#Σn

2 ∈ I(Mn). Hence I(Mn) is a group.

Let Σn ∈ I(Mn) so that there is an orientation preserving diffeomorphism
f̄ : Mn → Mn#Σn. In what follows we use the notation of the first two
paragraphs of this chapter. We have that

f̄ ◦ ϕ : Dn →Mn#Σn

and
f̄ ◦ Cg : Dn →Mn#Σn

are orientation preserving embeddings. By the Palais-Cerf Lemma ([Milnor
3]) these embeddings are isotopic. By the isotopy extension theorem (ibid)
there is an ambient isotopy

ht : Mn#Σn →Mn#Σn

such that h0 =identity and

h1 ◦ f̄ = ϕ ◦ Cg : Dn →Mn#Σn

Therefore ¯̄f = h1 ◦ f̄ : Mn → Mn#Σn is a diffeomorphism such that
¯̄f(ϕ(Dn)) = ϕ(Dn). Also, ¯̄f and f̄ are in the same isotopy class. If ψ : Dn →
Mn is another embedding with ψ(Dn)∩ϕ(Dn) = ∅ we can use the Palais-Cerf

Lemma again and conclude that ¯̄f can be chosen so that ¯̄f =identity on some
neighborhood of ψ(Dn). We have proved
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Lemma 11: If Σn ∈ I(Mn) , there is an orientation preserving diffeomorp-

hism ¯̄f : Mn → Mn#Σn such that ¯̄f(ϕ(Dn)) = ϕ(Dn) and ¯̄f = identity on
some neighborhood of ψ(Dn).

Let Mn
0 be Mn

0 − int(ϕ(Dn)). Then Mn
0 is a smooth submanifold with boun-

dary of M and of Mn#Σn. Suppose now that Σn ∈ I(Mn) and let ¯̄f : Mn →
Mn#Σn be as in Lemma 11. From the definition of the smoothing onMn#Σn

we have that the following composition is a diffeomorphism:

(∗) Dn ϕ−→ ϕ(Dn)
¯̄f |ϕ(Dn)−→ ϕ(Dn)

ϕ−1

−→ Dn Cg−1

−→ Dn

Recall now that two orientation preserving diffeomorphisms

h, h̄ : Sn−1 → Sn−1

are isotopic if and only if

h̄−1 ◦ h : Sn−1 → Sn−1

extends to a diffeomorphism of Dn ([Milnor 3]). Therefore, since

g−1 ◦ (ϕ−1 ◦ ¯̄f ◦ ϕ)|Sn−1

extends by (*) to Dn, we conclude that g and ϕ−1 ◦ ¯̄f ◦ ϕ|Sn−1 are isotopic.

Let gt : Sn−1 → Sn−1 be an isotopy between g0 = g and g1 = ϕ−1 ◦ ¯̄f ◦ ϕ.
Then

ϕ−1 ◦ gt ◦ ϕ : ∂Mn
0 → ∂Mn

0

is an isotopy between ϕ−1 ◦ g ◦ ϕ : ∂Mn
0 → ∂Mn

0 and ϕ ◦ ϕ−1 ◦ ¯̄f ◦ ϕ ◦ ϕ−1 =
¯̄f |∂Mn

0 : ∂Mn
0 → ∂Mn

0 . Since ¯̄f |∂Mn
0 extends (by ¯̄f) to Mn

0 it follows from
[Palais] that

ϕ ◦ g ◦ ϕ−1 : ∂Mn
0 → ∂Mn

0

also extends to Mn
0 . Note that we can assume the extension to be the identity

on some neighborhood of ψ(Dn). We have proved half of the following

Proposition 12: Σn ∈ I(Mn) if and only if the diffeomorphism ϕ ◦ g ◦ϕ−1 :
∂Mn

0 → ∂Mn
0 extends to a diffeomorphism f0 of Mn

0 such that f0 = identity
on some neighborhood of ψ(Dn).

Proof: It remains to consider the “if ” part. Suppose that ϕ◦g◦ϕ−1 : ∂Mn
0 →

∂Mn
0 extends to a diffeomorphism h : Mn

0 →Mn
0 . Define f : Mn →Mn#Σn

as follows: Let f |Mn
0 = h and let f |ϕ(Dn) = h be

ϕ ◦ Cg ◦ ϕ−1 : ϕ(Dn) ⊆Mn → ϕ(Dn) ⊆Mn#Σn
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then, checking with the chart ϕ ◦ Cg−1 ◦ ϕ−1 at x0 ∈Mn#Σn, we have that
f : Mn →Mn#Σn is a diffeomorphism. QED

Corollary 12’: Σn ∈ I(Mn) if and only if there is a diffeomorphism f :
Mn →Mn#Σn such that

f |ϕ(Dn) = ϕ ◦Cg ◦ϕ−1

and f = identity on some neighborhood of ψ(Dn).

Proof: Let f0 : Mn
0 →Mn

0 be as in Lemma 12, then f0 extends to f : Mn →
Mn#Σn if we let f |ϕ(Dn) = ϕ◦Cg ◦ϕ−1 (check with the appropriate chart).
QED

A diffeomorphism f : Mn → Mn#Σn satisfying the conditions of Corollary
12’ will be called an i-diffeomorphism. We have proved

Theorem 13: In any isotopy class of orientation preserving diffeomorphisms
f : Mn →Mn#Σn there is an i-diffeomorphism. Q.E.D.

The following proposition provides an upper bound for the inertia groups of
some manifolds.

Proposition 14: Let M4n−1 be a closed, smooth, oriented and connected
manifold which bounds some manifold W 4n

0 satisfying b) of page 15. Then

I(M4n−1) ⊆ ker gR

Proof: If M4n−1 ∼= M4n−1#Σ4n−1, we have that

gR(M4n−1#Σ4n−1) = gR(M4n−1)− gR(Σ4n−1)

Therefore
gR(Σ4n−1) ≡ 0 mod t′n

Q.E.D.

3.3.- Concordance Inertia Groups

The concordance inertia group of Mn, Ic(M
n) ⊆ Θn, consists of those ho-

motopy spheres Σn such that for some triangulation α : K → Mn, Mn and
Mn#Σn are diffeomorphic via a diffeomorphism f̄ : Mn →Mn#Σn which is
PD concordant to the identity 1 : Mn →Mn#Σn.

Remark: Let PL/O be the space defined in [Milnor 4] and let Mn → Sn

be a degree one map. Consider a closed connected smooth manifold Mn.
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There is a one-to-one correspondence between the set of concordance classes
of smoothings of Mn and the set of homotopy classes [Mn, PL/O] (ibid), in
particular, πn(PL/O) ∼= Θn ([Hirsch]). Then, the concordance inertia group
Ic(M

n) fits into an exact sequence of pointed sets

0→ Ic(M
n)→ Θn

∼= [Sn, PL/O]→ [Mn, PL/O]

Let the diffeomorphism f̄ above be smoothly isotopic to a diffeomorphism
f : Mn →Mn#Σn. Then f̄ ∼c f , and since f̄ ∼c 1 it follows that f ∼c 1.

From Theorem 13, we know that there is an i-diffeomorphism f : Mn →
Mn#Σn smoothly isotopic to f , hence:

Proposition 15: Σn ∈ Ic(M
n) if and only if there is an i-diffeomorphism

f : Mn →Mn#Σn which is PD concordant to the identity map.

Proof: The ‘only if’ part is just the previous discussion. The ‘if’ part is trivial.
Q.E.D.

Consider now Mn
0 = Mn − intϕ(Dn), ∂Mn

0 = ϕ(Sn−1), Σn ∈ Θn and g :
Sn−1 → Sn−1 a corresponding diffeomorphism.

Proposition 16: If ϕ ◦g ◦ϕ−1 extends to a diffeomorphism f0 : Mn
0 →Mn

0 such
that f0 is PD isotopic to the identity 1Mn

0
: Mn

0 →Mn
0 , then Σn ∈ Ic(Mn).

Proof: Let F : Mn
0 × I → Mn

0 × I be a PD isotopy from f0 to 1Mn
0
, on the

triangulation α0 : K0 →Mn
0 . First extend α0 to a triangulation

α : K0 ∪ Cone(∂K0)→Mn

with α defined by the following condition:

α|K0 = α0 α[(t, x)] = ϕtϕ−1α(x)

where 0 ≤ t ≤ 1, x ∈ ∂K0 and [(t, x)] ∈ Cone(∂K0). For each t, let Ft :
Mn

0 →Mn
0 be defined by

F (x, t) = (Ft(x), t)

then ht : ϕ−1 ◦Ft ◦ϕ|Sn−1 : Sn−1 → Sn−1 extends by the cone extension to a
map

Cht : Dn → Dn

Let F̄t : Mn×{t} →M ×{t} be the extension of Ft defined by the following
condition

F̄t|ϕ(Dn) = ϕ ◦Cht ◦ϕ−1
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Then F̄0 is a diffeomorphismMn →Mn#Σn (in fact, F̄0|ϕ(Dn) = ϕ ◦Cg ◦ϕ−1),
and F̄1 =identity. Then the map F̄ : Mn × I →Mn × I defined by

F̄ (x, t) = (F̄t(x), t)

is a PD isotopy (on α) from the diffeomorphism F̄0 : Mn → Mn#Σn to
1Mn : Mn →Mn#Σn. Therefore Σn ∈ Ic(Mn) Q.E.D.

3.4.- Upper bound for Ic(M
4n−1)

Continue with the notations of 3.2, i.e., ϕ : Dn → Dn is an embedding etc.

Define
∆n+1

+ = {(x1, . . . , xn+1) ∈ Dn+1 | xn+1 ≥ 0}

∆n+1
− = {(x1, . . . , xn+1) ∈ Dn+1 | xn+1 ≤ 0}

then ∆n+1
+ ∪ ∆n+1

− = Dn+1 and Dn
+ ⊆ ∆n+1

+ , Dn
− ⊆ ∆n+1

− . Consider now
smooth embeddings

e+ : ∆n+1
+ →Mn × I e+ : ∆n+1

+ →Mn × I

defined as follows

e+(x) = e+(x1, . . . , xn+1) = (ϕ((1/6)x1, . . . , (1/6)xn), (1/6)xn+1)

e−(x) = e−(x1, . . . , xn+1) = (ϕ((1/6)x1, . . . , (1/6)xn), 1 + ((1/6)xn+1))

Note that if xn+1 = 0 then

e+(x) = (ϕ((1/6)x), 0)

e−(x) = (ϕ((1/6)x), 1)

If on Mn × I (x, 0) is identified to (x, 1), the quotient space is a smooth
manifold naturally isomorphic to Mn × S1. So this quotient of Mn × I will
be denoted by Mn × S1.

If (x, t) ∈Mn × I, denote by [x, t] its image on Mn × S1 under the quotient
map. Consider

V n+1 = Mn × I − int(e+(∆n+1
+ ) ∪ e−(∆n+1

− ))

If on V n+1 (x, 0) ∈ V n+1 ⊆ Mn × I is identified to (x, 1) ∈ V n+1 ⊆ Mn × I,
the resulting smooth manifold will be the same as Mn × S1−open disk and
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this quotient of V n+1 will be denoted by (Mn × S1)0. If (x, t) ∈ V n+1 let
[x, t] denote its image on (Mn × S1)0 under the quotient map. Similarly, [A]
is the image of the subset A ⊆ V n+1. Finally (Mn × S1)0 ⊆ Mn × S1 and
∂((Mn × S1)0) = Sn.

Since (Mn × S1)0 = Mn × S1−open disk the index of (Mn × S1)0 is 0, for

s((Mn × S1)0) = s(Mn × S1) = s(Mn)s(S1) = 0

and for Pontriagin numbers

pω((Mn × S1)0) = pω(Mn × S1) = pω(Mn × ∂D2) = pω(∂(Mn ×D2)) = 0

Now let Σn ∈ Ic(Mn) and F : Mn × I → (Mn#Σn) × I a PD concordance
between the i-diffeomorphism f : Mn →Mn#Σn and the identity 1 : Mn →
Mn#Σn. It may be assumed that

F (x, t) = (f(x), t) for0 ≤ t ≤ (1/3)

and that
F (x, t) = (x, t) for(2/3) ≤ t ≤ 1

Let Xn+1
2 be the smooth manifold obtained from

V n+1 = Mn × I − int(e+(∆n+1
+ ) ∪ e−(∆n+1

− ))
= (Mn#Σn)× I − int(e+(∆n+1

+ ) ∪ e−(∆n+1
− ))

identifying (x, 1) ∈ V n+1 to (f(x), 0) ∈ V n+1. This identification is well
defined since

f |ϕ(Dn) = ϕ ◦Cg ◦ϕ−1

∂Xn+1
2 is the manifold obtained from the disjoint union

e+(Dn
+) + e−(Dn

−)

identifying
(z, 1) = (ϕ((1/6)x), 1) ∈ e+(Sn−1)

to
(f(z), 0) = (f(ϕ((1/6)x), 0)

= (ϕ ◦Cg ◦ϕ−1 ◦ϕ((1/6)x), 0))
= (ϕ((1/6)g(x)), 0) ∈ e−(Sn−1)
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for each x ∈ Sn−1.

This boundary is therefore diffeomorphic to the homotopy sphere Σn obtained
from the disjoint union Dn

+ +Dn
− identifying x ∈ Dn

+ to g(x) ∈ Dn
−.

An explicit diffeomorphism h : Σn → ∂Xn+1
2 is defined by

(h|Dn
+)(x) = e+(x), x ∈ Dn

+

(h|Dn
−)(x) = e−(g(x)), x ∈ Dn

−

The PD concordance F : Mn × I → (Mn#Σn) × I restricts to a map
V n+1 → V n+1 which induces a PD isomorphism of pairs

H : ((Mn × S1)0, ∂((Mn × S1)0))→ (Xn+1
2 , ∂Xn+1

2 )

Therefore Xn+1
2 and (Mn × S1)0 are PL isomorphic. It follows that if n ≡

−1mod4, the index satisfies

s(Xn+1
2 ) = s((Mn × S1)0) = 0

and
pω(Xn+1

2 ) = pω((Mn × S1)0) = 0

for all ω.

Theorem 17: If M4n−1 is closed smooth and orientable manifold then

Ic(M
4n−1) ⊆ ker gR

If M4n−1 is also spin then Ic(M
4n−1) ⊆ ker fR.

Proof: Let Σ4n−1 ∈ Ic(M4n−1) and letX4n
2 be the manifold constructed abo-

ve, with ∂X4n
2
∼= Σ4n−1 then X4n

2 has all decomposable Pontriagin numbers
and index equal to zero, hence gR(Σ4n−1) = s(X4n

2 ) = 0 ∈ Zt′n .

If M4n−1 is spin, so are M4n−1 × S1 and (M4n−1 × S1)0. Since X4n
2 is PL

isomorphic to (M4n−1 × S1)0,

w2(X
4n
2 ) = w2((M

4n−1 × S1)0) = 0

hence X4n
2 is spin, and fR(Σ4n−1) = s(X4n

2 ) = 0 ∈ Zt′n . Q.E.D.

In particular, the Milnor sphere Σ4n−1
0 is not in Ic(M

4n−1) for any orientable
manifold M4n−1. Moreover since ker gR ∩ bP4n consists of elements of order
2, it has at most 22n−2 · an elements, Ic(M

4n−1)∩ bP4n has at most 22n−2 · an
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elements which are all of order 2. If M4n−1 is spin, since ker fR ∩ bP4n = 0,
Ic(M

4n−1) ∩ bP4n = 0 for any spin manifold M4n−1.

3.5.- Upper bound for Ic(M
8n+1)

In order to prove results in dimensions ≡ 1(mod 8) we need the next Pro-
position. Assume the notation of 3.4 so that ϕ, ψ : Dn → Mn, ϕ(Dn) ∩
ψ(Dn) = ∅, etc.

Proposition 18: Let Σn ∈ Ic(Mn). Then there is an i-diffeomorphism

f : Mn →Mn#Σn

a PD concordance
F : Mn × I → (Mn#Σn)× I

and an open set
U ⊆ ψ(Dn) y0 = ψ(0)

such that
F |U × I ∪Mn × [(2/3), 1] = identity

and F (x, t) = (f(x), t) for 0 ≤ t ≤ 1/3.

Proof: The proof will be postponed until Chapter 6.

It can be assumed above that U is an n-disk in Mn. Let

A′ = U × I ∪Mn × ((2/3), 1) ⊆ V n+1

B′ = {y0} × I ∪Mn × {11/12} ⊆ A′

Since f |ψ(Dn) is the identity, and U ⊆ ψ(Dn), the image [A′] of A′ under
the identification map V n+1 → (Mn × I)0 is equal to its image under the
identification map V n+1 → Xn+1

2 . Call A this common image. Then A is
naturally isomorphic to

U × S1 ∪ [Mn × (2/3, 1)]

and is an open submanifold of both (Mn × I)0 and Xn+1
2 .

Since B′ ⊆ A′, if we call B the image [B] of B′ under either identification
map, we have that B ⊆ A. B is canonically isomorphic to

{y0} × S1 ∪ [Mn × {11/12}]
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and B is a strong deformation retract of A. Note that since the PD isomorp-
hism

F : Mn × I →Mn × I

satisfies F |A′ =identity, then the PD isomorphism

H : (Mn × S1)0 → Xn+1
2

induced by F satisfies H|A =identity.

Next, surgery will be used. References for this are [Milnor 6] and [Kervaire-
Milnor].

In order to apply theorem 2b) surgery will be performed to (Mn × S1)0 and
Xn+1

2 to kill the fundamental groups and get simply connected manifolds
W n+1

1 and W n+1
2 such that ∂W n+1

1 = Sn and ∂W n+1
2 = Σn.

It will be proved that the surgery can be performed inside A so that the PD
isomorphism H ‘extends’ to a PD isomorphism W n+1

1 → W n+1
2 . Also, it will

be shown that if Mn is a spin manifold then W n+1
1 (and therefore W n+1

2 ) is
also a spin manifold, if the surgery is performed carefully enough. Choose as
base point ∗ = [(y0, 11/12)].

Lemma 19: The inclusion iB : B → (Mn × S1)0 induces an epimorphism

π1(B)→ π1((M
n × S1)0)

Proof: (Mn × S1)0 = Mn × S1−open disk. Since n ≥ 7 (in fact n ≥ 2
suffices), the inclusion

(Mn × S1)0 ⊆Mn × S1

induces an isomorphism

π1((M
n × S1)0)→ π1(M

n × S1)

Henceforth, to prove the Lemma it suffices to prove that

π1(B)→ π1(M
n × S1)

is an epimorphism. But π1(B) is the free product of π1(M
n)× {11/12} and

π1({y0} × S1), and the diagram

Mn × {11/12} ←−−→ Mn × S1 ←−−→ {y0} × S1
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(the arrows are inclusions and projections) gives a direct product diagram

π1(M
n × {11/12}) ←−−→ π1(M

n × S1)
←−−→ π1({y0} × S1)

therefore π1(B)→ π1(M
n × S1) is an epimorphism. Q.E.D.

Lemma 20: Any map S1 →Mn×S1 is homotopic to an embedding S1 → A.

Proof: By Lemma 19, any map S1 → Mn × S1 is homotopic to a map
S1 → B ⊆ A. Since n ≥ 7 and A is open, any map S1 → B is homotopic to
an embedding S1 → A. Q.E.D.

Let S1
i , i = 1, . . . , r be copies of the circle S1, and βi : S1

i → A ⊆ (Mn×S1)0

embeddings representing a set of generators of π1((M
n × S1)0). Since n ≥ 7,

we can assume the embeddings have disjoint images. Let β̃i : S1
i → A ⊆

(Mn×S1)0 be a ”thickening.of βi, i.e., β̃i(x, 0) = βi(x). These thickenings exist
since the normal bundle of βi(S

1
i ) in A is trivial (manifolds are orientable).

Also, assume the β̃i have disjoints images. Then H ◦ β̃i : S1
i → A ⊆ Xn+1

2

are embeddings, which represent a set of generators of π1(X
n+1
2 ), and with

thickenings H ◦ β̃i. The trace of the surgery on (Mn × S1)0 based on the
embeddings β̃i is the manifold Zn+2

1 obtained from

D2
1 ×Dn ∪ · · · ∪D2

r ×Dn + (Mn × S1)0 × I

identifying x ∈ S1
i × Dn ⊆ D2

i × Dn to (β̃i(x), 1) ∈ (Mn × S1)0 × {1} ⊆
(Mn×S1)0×I. Then Zn+2

1 is a smooth manifold except along certain corners,
and

∂Zn+2
1 = Mn × S1 × {0} ∪ S1 × I ∪W n+1

1

where W n+1
1 is a 1-connected smooth manifold with ∂W n+1

1 = Sn × {1}.
Similarly, there is a trace Zn+2

2 of the surgery on Xn+1
2 along H ◦βi with

∂Zn+2
2
∼= Xn+1

2 × {0} ∪ Σn × ∪W n+1
1

where W n+1
2 is a 1-connected smooth manifold with ∂W n+1

2
∼= Σn × {1}.

The PD isomorphism H : (Mn×S1)0 → Xn+1
2 is the identity on A. Therefore

H × 1I : (Mn × S1)0 × I → Xn+1
2 × I

extends by the identity to give a PD isomorphism Zn+2
2 → Zn+1

2 . By res-
triction this gives a PD isomorphism (W n+1

1 , ∂W n+1
1 ) → (W n+1

2 , ∂W n+1
2 ).

Therefore there is also a PL isomorphism between these manifolds.
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Recall that an orientable manifold is spin if and only if it is 2-parallelizable.
If Mn is spin, so is Mn × S1. Therefore (Mn × S1)0 is also spin, therefore
2-parallelizable. But in [Milnor 6] it is shown that the thickenings β̃i can be
chosen so that Zn+2

1 is 2-parallelizable and therefore spin. Therefore W n+1
1 is

also spin. Since W n+1
2 is PL isomorphic to W n+1

1 , W n+1
2 is also spin.

Theorem 21: Let M8n+1 be a closed connected smooth manifold. If M8n+1

is spin then
fR(Ic(M

8n+1)) = 0

Proof: Let Σ8n+1 ∈ Ic(M
8n+1). Then there are 1-connected smooth ma-

nifolds W 8n+2
1 , W 8n+2

2 with ∂W 8n+2
1

∼= S8n+1, ∂W 8n+2
2

∼= Σ8n+1, and a PL
isomorphism of pairs

(W 8n+2
1 , ∂W 8n+2

1 ) ∼= (W 8n+2
2 , ∂W 8n+2

2 )

and applying Proposition 2b) we get fR(Σ8n+1)=Q.E.D.
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4. The pairing ρ̄n,k

4.1.- Definition of the pairing and its properties
In this section we construct and study a bilinear map

ρ̄n,k−1 : Θn × πn+k−1(S
n−1)→ Θn+k

which turns out to be an extension of the pairing

τn,k : Θn × πk(SO(n− 1))→ Θn+k

of Milnor-Novikov (see [Lashof]).

The pairing ρ̄n,k−1 is in fact a stable version of the map ρn,k of [Bredon].

We will relate ρ̄n,k−1 to concordance inertia groups and use the results of
previous sections to prove some consequences.

Consider a manifold W n+k−1 and a framed submanifold 〈Mk, F 〉. In case
∂W n+k−1 6= ∅ and ∂Mk 6= ∅ we will require that Mk ∩ ∂W n+k−1 = ∂Mk the
intersection being transverse. Let g : Dn−1 → Dn−1 be a diffeomorphism,
such that g =identity on a neighborhood of Sn−2 = ∂Dn−1. Take a closed
tubular neighborhood T of Mk in W n+k−1, and let

f : Mk ×Dn−1 → T

be a representation corresponding to the framing F . Let g ◦〈Mk, F 〉 be the
following diffeomorphism of W n+k−1:

On T let g ◦〈Mk, F 〉 be f ◦g ◦f−1 and on W n+k−1 − T let g ◦〈Mk, F 〉 be the
identity. This makes sense since g =identity on a neighborhood of Sn−2 =
∂Dn−1. It follows readily from the tubular neighborhood theorem that the
concordance class of g ◦〈Mk, F 〉 is independent of the particular tubular
neighborhood T , and representation f corresponding to F , chosen for the
construction.

Suppose now that g′ and g are diffeomorphisms of Dn−1 which are concordant
via a concordance

H : Dn−1 × I → Dn−1 × I
with H =identity on a neighborhood of Sn−2 × I. Then one can carry H
via 1Mk × f to a concordance between g ◦〈Mk, F 〉|T and g′ ◦〈Mk, F 〉|T and
this concordance can be extended by the identity to a concordance between
g ◦〈Mk, F 〉 and g′ ◦〈Mk, F 〉. So that the concordance class of g ◦〈Mk, F 〉 does
not change if we change g within its concordance class.
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If Σn is a homotopy sphere, let

g : Sn−1 → Sn−1

be a corresponding diffeomorphism. Let Σn ◦〈Mk, F 〉 be the concordance class
of g ◦〈Mk, F 〉. This is well defined according to the above discussion.

If Σn,Σ′n ∈ Θn are homotopy n-spheres corresponding to g : Dn−1 → Dn−1

and g′ : Dn−1 → Dn−1 then Σn#Σ′n corresponds with g ◦g′. One readily
checks that

(g ◦g′) ◦〈Mk, F 〉 = (g ◦〈Mk, F 〉) ◦(g′ ◦〈Mk, F 〉)

and this implies that

(Σn#Σ′n) ◦〈Mk, F 〉 = (Σn
◦〈Mk, F 〉) ◦(Σ′n

◦〈Mk, F 〉)

Let 〈Mk, F 〉 and 〈M ′k, F ′〉 be two framed submanifolds of W n+k−1 which are
disjoint and well apart. Let 〈Mk+M ′k, F+F ′〉 denote the framed submanifold
which is the union of M and M ′. Then it follows from the definition that

Σn
◦〈Mk +M ′k, F + F ′〉 = (Σn

◦〈Mk, F 〉) ◦(Σn
◦〈M ′k, F ′〉)

Now we prove that if 〈Mk, F 〉 and 〈M ′k, F ′〉 are framed cobordant in W n+k−1

then
Σn

◦〈Mk, F 〉 = Σn
◦〈M ′k, F ′〉

If 〈V k+1, G〉 is a framed cobordism between Mk and M ′k then Σn ◦〈V k+1, G〉
gives a concordance between Σn ◦〈Mk, F 〉 and Σn ◦〈M ′k, F ′〉 as desired.

Let now W n+k−1 be Sn+k−1. If Mk = Sk ⊆ Sn+k−1, then we can identify
〈Sk, F 〉 with an element α̂ ∈ πk(SO(n− 1)), and

Σn
◦〈Sk, F 〉 = τn,k(Σ

n, α̂)

where τn,k : Θn × πk(SO(n − 1)) → Θn+k is the Milnor-Munkres-Novikov
pairing (see [Lashof]).

Finally observe that there is a natural one-to-one correspondence between ele-
ments of πn+k−1(S

n−1) and framed cobordism classes of framed k-submanifolds
of Sn+k−1 (see [Stong]). If α ∈ πn+k−1(S

n−1) let 〈Mk, F 〉 be the corresponding
framed submanifold. Let

ρ̄n,k−1 : Θn × πn+k−1(S
n−1)→ Θn+k
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be defined by
ρ̄n,k−1(Σ

n, α) = Σn
◦〈Mk, F 〉

Therefore we have that

τn,k(Σ
n, α̂) = ρ̄n,k−1(Σ

n, J(α̂))

hence

Theorem 22 : There is a bilinear map

ρ̄n,k−1(Σ
n, α) = Σn

◦〈Mk, F 〉

such that the following diagram commutes

Θn × πn+k(SO(n− 1))

Θn × πn+k−1(S
n−1)

1× Jk

? ρ̄n,k−1 - Θn+k

τn,k

-

In the next proposition it is proved that ρ̄n,k−1 is related to ρn,k by suspension

Proposition 23 : Let S : πn+k−1(S
n−1) → πn+k(S

n) be the suspension ho-
momorphism. Then the following diagram commutes:

Θn × πn+k−1(S
n−1)

ρ̄n,k−1- Θn+k

Θn × πn+k(S
n)

1× S

?
ρn,k

-

Proof: Represent α ∈ πn+k−1(S
n−1) by a framed submanifold 〈Mk, F 〉

of Sn+k−1. Let ε be a normal vector field to Sn+k−1 in Sn+k. Then S(α)
corresponds to the framed manifold 〈Mk, F + ε〉 in Sn+k−1. We can push
〈Mk, F + ε〉 along −ε, to obtain a framed cobordant (to 〈Mk, F + ε〉) mani-
fold 〈M ′k, G〉 ⊆ Dn+k

− ⊆ Sn+k. Let T be a tubular neighborhood of Mk in
Sn+k−1 and let

F̄ : Mk ×Dn−1 → T
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be a product representation corresponding to F .

Then using tubular neighborhood theory we can assume that 〈M ′k, G〉 has a
tubular neighborhood N in Sn+k, with a product representation

Ḡ : M ′k ×Dn → N

which has the following properties:
a) N ⊆ Dn+k

− with N ∩ Sn+k−1 = T
b) Ḡ|M ′k ×Dn−1

+ = 1Mk × λ ◦F̄ ◦(1Mk × λ−1)
where λ : Dn−1 → Dn−1

+ ⊆ Sn−1 is defined on 1.1. Let Σn ∈ Θn and let f :
Dn−1 → Dn−1 be a corresponding diffeomorphism. Define f̄ : Sn−1 → Sn−1

by

f̄(x) =

{
λ ◦f ◦λ−1(x) if x ∈ λ(Dn−1)
x if x /∈ λ(Dn−1)

Then ρ̄n,k−1(Σ
n, α) is represented by the diffeomorphism

f ◦〈Mk, F 〉 : Sn+k−1 → Sn+k−1

The homotopy sphere ρn,k(Σ
n, S(α)) is obtained from the disjoint union

(Sn+k − int (N)) +N

identifying
x ∈ ∂(Sn+k − int (N)) = ∂N

to
Ḡ ◦(1Mk × f̄) ◦Ḡ−1(x) ∈ ∂N

In view of the homomorphisms of 1.1, to prove the Proposition it suffices
to show that ρn,k(Σ

n, S(α)) is the same than the homotopy sphere obtained
from Dn+k

− +Dn+k
+ identifying

x ∈ Sn+k−1 ⊆ ∂Dn+k
−

to
f ◦〈Mk, F 〉(x) ∈ Sn+k−1 ⊆ ∂Dn+k

+

Observe that
Dn+k

− = (Dn+k
− − (int (N) ∪ T )) ∪N
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Therefore the last identification above can be made in two steps:

First from Sn+k − int (N) to (Dn+k
+ − (int (N) ∪ T )) +Dn+k

+ identifying

x ∈ ∂(Dn+k
+ − int (T )) ⊆ (Dn+k

+ − (int (N) ∪ T ))

to
x ∈ Dn+k

+

and then identify
x ∈ Sn+k − int (N) = ∂N

to {
f ◦〈Mk, F 〉 if x ∈ T ⊆ ∂N
x if x /∈ T

But this gives the same than ρn,k(Σ
n, S(α)) Q.E.D.

Corollary 24: The following diagram commutes for k−1 < n (see Prop. 4):

Θn × πn+k(SO(n− 1))

Θn × πn+k−1(S
n−1)

1× Jk

? ρ̄n,k−1 - Θn+k

τn,k

-

Θn × πn+k(S
n)

1× S

?
ρn,k

-

CokerJn × πn+k(S
n)

p′ × 1

? c ′
- CokerJn+k

p
′

-

Remark: The condition k − 1 < n is needed in order to ensure the commu-
tativity of the lower square (see 1.4.)

Proof: This follows from Proposition 4, Theorem 22 and Proposition 23.
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Remark: It has been mentioned that πn(PL/0) ∼= Θn. Using this interpre-
tation for Θn the pairing ρn,k corresponds to the composition map

πn(PL/0)× πn+k(S
n)→ πn+k(PL/O)

defined by
([a], [b])→ [a ◦b]

and the pairing ρ̄n,k−1 corresponds to

([a], [b′])→ [a ◦S(b′)]

where S(b′) is the suspension of b′.

4.2.- Inertia groups and ρ̄n,k−1

Let W n+k be a smooth closed manifold. Removing from W n+k an open cell
we obtain a smooth manifold W n+k

0 with ∂W n+k
0
∼= Sn+k−1.

Consider now the restriction map

r : [W n+k
0 , Sn−1]→ [Sn+k−1, Sn−1]

i.e. r(g) = g|Sn+k−1.

Theorem 25: ρ̄n,k−1(Θn × r([W n+k
0 , Sn−1])) ⊆ Ic(W

n+k)

Proof: Let α ∈ πn+k−1(S
n−1), and represent α by a framed submanifold

〈Mk, F 〉 of Sn+k−1. Then α ∈ r([W n+k
0 , Sn−1]) if and only if there is a framed

submanifold 〈V k+1
0 , G〉 of W n+k

0 such that

∂V k+1
0 = V k+1

0 ∩ Sn+k−1 and G|Mk = F

If Σn is a homotopy n-sphere, clearly Σn ◦〈V k+1
0 , G〉 gives a diffeomorphism

of W n+k
0 to itself which restricted to Sn+k−1 is

Σn
◦〈Mk, F 〉 = ρ̄n,k−1(Σ

n, α)

Since diffeomorphisms of the disk are PD isotopic to the identity, carrying
the isotopies to the tubular neighborhood of V k+1

0 in W n+k
0 via the framing,

one sees that Σn ◦〈Mk, F 〉 is PD isotopic to the identity. Therefore by Pro-
position 16, ρ̄n,k−1(Σ

n, α) ∈ Ic(W n+k) whenever α ∈ r([W n+k
0 , Sn−1]) Q.E.D.
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Next we prove that a manifold W n+k always exists such that Ic(W
n+k) ⊇

ρ̄n,k−1(Θn × r([W n+k
0 , Sn−1])).

Theorem 26: For any n and k ≥ 1 there exists an orientable (n+k)-manifold
W n+k such that

Ic(W
n+k) ⊇ image(ρ̄n,k−1)

Proof: If Σn+k ∈ Ic(W n+k) and Σ′n+k ∈ Ic(W ′n+k), then Σn+k#Σ′n+k be-
longs to Ic(W

n+k#W ′n+k). This can be proved as follows.

Let f : W n+k → W n+k#Σn+k be a diffeomorphism which is PD concordant
to 1W n+k . From Proposition 18 we can assume that there is a concordance H
from f to 1W n+k and an open set U ⊆ W n+k such that H is the identity on
U × I ⊆ W n+k × I.
Similarly, there is a PD concordance H ′ from

f ′ : W ′n+k → W ′n+k#Σ′n+k

to the identity, such that H ′ =identity on U ′ × I where U ′ ⊆ W ′n+k is open.

If ballsB,B′ are removed from U and U ′ and the connected sumW n+k#W ′n+k

is formed, identifying ∂B to ∂B′, then there is a diffeomorphism

f#f ′ : W n+k#W ′n+k → (W n+k#Σn+k)#(W ′n+k#Σ′n+k)

defined by the conditions

f#f ′|(W n+k −B) = f f#f ′|(W ′n+k −B′) = f ′

and there is a PD concordance H ′′ from f#f ′ to the identity defined by the
conditions

Given α ∈ πn+k−1(S
n−1) we will construct a smooth closed connected and

orientable manifold W n+k
α such that if (W n+k

α )0 = W n+k
α - open disk, then

α ∈ r([W n+k
0 , Sn−1])). Granting the existence of W n+k, the proof goes as

follows: Consider the set Θn×{α} ⊆ Θn×πn+k−1(S
n−1) and let Pα its image

under ρ̄n,k−1, that is,

Pα = ρ̄n,k−1(Θn × {α}) ⊆ Θn+k

By Theorem 25, Pα ⊆ Ic(W
n+k). Let then

α1, . . . , αr ∈ πn+k−1(S
n−1)
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be such that

Pα1 ∪ · · · ∪ Pαr = ρ̄n,k−1(Θn × πn+k−1(S
n−1))

Then
Ic(W

n+k
1 # · · ·#W n+k

r ) ⊇ Pα1 ∪ · · · ∪ Pαr

Therefore if W n+k = W n+k
1 # · · ·#W n+k

r then

Ic(W
n+k) ⊆ ρ̄n,k−1(Θn × πn+k−1(S

n−1))

It remains to construct W n+k.

Represent α by a framed submanifold 〈Mk, F 〉 of Sn+k−1 and let

F̄ : Mk ×Dn−1 → T

be a product representation, associated to F , of a tubular neighborhood T
of Mk in Sn+k−1.

Since k ≥ 1 and Mk is framed, there is some compact orientable manifold
V k+1

0 such that ∂V k+1
0 = Mk, (recall that Ωfr

k → ΩSO
k is zero if k ≥ 1).

Consider now T ⊆ Sn+k−1 = ∂Dn+k and Mk ×Dn−1 ⊆ V k+1
0 ×Dn−1. Form

the disjoint union
V k+1

0 ×Dn−1 +Dn+k

and identify
Mk ×Dn−1 ⊆ V k+1

0 ×Dn−1

to
T ⊆ Sn+k−1 =⊆ Dn+k

via F̄ . After straightening corners along Mk × Sn−2 a smooth manifold with
boundary, Xn+k, is obtained such that there are natural embeddings

V k+1 ×Dn−1 q→ Xn+k Dn+k p→ Xn+k

Consider two disjoint copies, Xn+k
+ , Xn+k

− , of Xn+k and form the double

W n+k
α = D(Xn+k)

of Xn+k (Cf. [Munkres 1]). Remove from D(Xn+k) the open ball intDn+k ⊆
Xn+k

+ ⊆ D(Xn+k) and let (W n+k
α )0 be the resulting manifold. Then

∂(W n+k
α )0 = Sn+k−1
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and the framed submanifold 〈Mk, F 〉 of Sn+k−1 is the framed boundary of
〈V k+1

0 , G〉, where V k+1
0 ⊆ (W n+k

α )0 and the framing G is induced from the
standard framing to V k+1

0 in V k+1
0 ×Dn−1 ⊆ (W n+k

α )0. Therefore, by Thom-
Pontriagin construction

α ∈ r([W n+k
0 , Sn−1]))

Q.E.D.

Remark: Suppose that the manifold V k+1
0 is a spin manifold. Then V k+1

0 ×
Dn−1 is also a spin manifold and so is Dn+k. Then the spin structures of
V k+1

0 × Dn−1 and of Dn+k ⊆ Xn+k are compatible along V k+1
0 × Dn−1 ∩

Dn+k = Mk×Dn−1 since they are spin structures associated to the framings.
ThereforeXn+k is a spin manifold ([Minor 5], 1). Similarly,W n+k

α = D(Xn+k)
is spin.

Corollary 27: If n+ k ≡ −1( mod 4) then

gR(ρ̄n,k−1(Θn × πn+k−1(S
n−1)) = 0

Proof: This follows from Theorems 14 and 26. Q.E.D.

Consider now the subgroup

π′ = π′n+k−1,n−1 ⊆= π

consisting of classes which can be represented by an element 〈Mk, F 〉 with
Mk bounding some spin manifold. If Mk = Sk, k > 2, then Mk = ∂Dk+1 so
that J(πk(SO(n− 1)) ⊆ π′.

Also, by Theorem 3 a) the index of π′ in π is at most equal to 2. In fact,
π′ = π whenever k ≡ 3, 4, 5, 5, 7 or 8 mod 8, and

[π′ : π] = 2

if k ≡ 1, 2 mod 8.

Theorem 28: If n+ k ≡ −1( mod 4) or n+ k ≡ 1( mod 8) then

fR(ρ̄n,k−1(Θn × π′)) = 0

Proof: Let Σn+k ∈ ρ̄n,k−1(Θn×π); by Theorem 26 and the remark following
it, there is a spin manifold W n+k such that Σn+k ∈ Ic(W n+k). By Theorem
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17 in case n + k ≡ −1( mod 4) and by Theorem 21 in case n + k ≡ 1(
mod 8), fR(Σn+k) = 0.

Corollary 29: If n+ k ≡ −1 mod 4 or n+ k ≡ 1 mod 8 the map

p′ : Θn+k → CokerJn+k

is one to one when restricted to ρ̄n,k−1(Θn × π′).
Proof: This follows from the fact that the sequences

0 - bPr+1
�
fR

- Θr

p′
- CokerJr

- 0

are split exact for r = n + k, when n + k is as in the hypothesis, as follows
from the results of [Brumfiel 1,2,3] mentioned in section 1.2 above.
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5.- Proof of Proposition 18

Let Bn
r , r > 0, denote the n-cube of ‘width’ 2r.

Bn
r = [−r, r]×

n
^· · · ×[−r, r] ⊆ Rn

Bn
1 is a cell complex with 2n vertexes:

v1, . . . , v2n

where vi has coordinates ±1. It follows that Bn
r is a cell complex with 2n

vertexes:
rv1, . . . , rv2n

For each i = 1, . . . , n there is a pair of (n− 1)-dimensional faces of Bn
r

Bn
(i,−r) = {x ∈ Bn

r | xi = −r}, Bn
(i,+r) = {x ∈ Bn

r | xi = r}

Taking these together they include all the vertexes vj and form a cell complex
that is the boundary, ∂Bn

r , of the cube Bn
r .

If 0 < r′ < r consider the annulus

An
r′,r = Bn

r − int (Bn
r′)

Then An
r′,r is a cell complex with 2n+1 vertexes

rv1, . . . , rv2n , r′v1, . . . , r
′v2n

The boundary of An
r′,r has two connected components: ∂Bn

r′ , called the inner
boundary, and ∂Bn

r , called the outer boundary; the vertexes r′v1, . . . , r
′v2n lie

in the inner boundary and the vertexes rv1, . . . , rv2n lie in the outer boundary.
Let 0 < s′ < s, then there is a vertex map from An

r′,r to An
s′,s which sends

r′vi to s′vi and rvi to svi. Triangulate An
r′,r without introducing new vertexes

([Hudson]). The above vertex map transports this triangulation of An
r′,r into

a triangulation of An
s′,s, and for these triangulations the vertex map extends

linearly over each simplex to give a PL isomorphism

k0 = k0(r
′, r; s′, s) : An

r′,r → An
s′,s

Note that if x is in the inner boundary of Ar′,r then k0(x) = (s′/r′)x, and if
x is in the outer boundary of Ar′,r then, k0(x) = (s/r)x.
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Lemma 30: There is a PL isomorphism

k : Bn
1 → Bn

2

with restrictions satisfying: k|Bn
1/2 =identity; and k|∂Bn

1 is equal to k(x) =
2x.

Proof: Clearly Bn
1 = Bn

1/2 ∪ An
1/2,3/4 ∪ An

3/4,1 and Bn
2 = Bn

1/2 ∪ An
1/2,1 ∪ An

1,2.
Define k as follows:

k|Bn
1/2 = identity

k|An
1/2,3/4 = k0(1/2, 3/4; 1/2, 1)

k|An
3/4,1 = k0(3/4, 1; 1, 2)

This is the required map. Q.E.D.

Corollary 31: There is a PL isomorphism

k1 : Bn
1 × I → Bn

2 × I

such that k1|Bn
1/2 × I=identity and k1|∂Bn

1 × I is given by k1(x, t) = (2x, t)

Proof: Take k1 = k × 1I

Lemma 32: There is a PL isomorphism

k2 : Bn
2 × I → ∂Bn

1 × I × I ∪Bn
1 × I × {1}

such that k2|Bn
1 ×I is k2(x, t) = (x, t, 1) and k2|∂Bn

2 ×I is given by k2(x, t) =
((1/2)x, t, 0).

Proof: Let k2|Bn
1 × I; we shall extend this to An

1,2 × I. The cell complex
An

1,2 × I has vertexes

v1 × {0}, . . . , v2n × {0}, 2v1 × {0}, . . . , 2v2n × {0}

v1 × {1}, . . . , v2n × {1}, 2v1 × {1}, . . . , 2v2n × {1}

On the other hand Bn
1 × I × I is a cell complex with vertexes

vi × {j} × {k}, j, k = 0 or 1

The vertex correspondence

vi × {j} → vi × {j} × {1}, 2vi × {j} → vi × {j} × {0}
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extends as in page 40 to give a PL isomorphism

k′ : An
1,2 × I → ∂Bn

1 × I × I

such that one has

k′(x, t) = (x, t, 1) = for x ∈ ∂Bn
1

k′(x, t) = (x, t, 0) = for x ∈ ∂Bn
2

Let k2|An
1,2 × I = k′. Then k2 is the required map. Q.E.D.

Let now
T = {(s, t) ∈ I × I | t ≤ 1− s}
T ′ = {(s, t) ∈ I × I | t ≥ 1− s}
E = T ∩ T ′

Proposition 33: Let H : Bn
1 × I → Bn

1 × I be a PL isomorphism, such that

H|Bn
1 × {1} = identity H(Bn

1 × {0}) = Bn
2 × {0}

then there is a PL isomorphism

H̄ : Bn
1 × I × I → Bn

1 × I × I

such that H̄(x, t, 0) = (H(x, t), 0) and H̄|Bn
1 × T ′ =identity.

Proof: Consider a triangulation K of Bn
1 × I with vertexes

(p1, t1), . . . , (pr, tr) pi ∈ Bi, ti ∈ I

such that H is simplicial in this triangulation. Make Bn
1 × T into a cell

complex as follows: Take as vertexes

(pi, ti, 0) (pi, 0, ti) i = 1, . . . , r

Take as k-cells of Bn
1 × T the cells spanned by

(pi0 , ti0 , 0), . . . , (pik , tik , 0), (pi0 , 0, ti0), . . . , (pik , 0, tik)

whenever (pi0 , ti0), . . . , (pik , tik) span a k − 1-simplex of K.

Define now a map on the vertexes:
If H sends (vi, ti) to (vj, tj) let the vertex map send (vi, ti, 0) to (vj, tj, 0) and
(vi, 0, ti) to (vj, 0, tj) This vertex map extends now to a PL isomorphism

H̄ ′ : Bn
1 × T → Bn

1 × T
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Note that H̄ ′|Bn
1 × E is the identity. Define now H̄ by the conditions

H̄|Bn
1 × T = H̄ ′

H̄|Bn
1 × T = identity

Q.E.D.

Proposition 34: Let H : Bn
1 × I → Bn

1 × I be as in previous Proposition.
Then there is a PL isomorphism

G : Bn
1 × I → Bn

1 × I

such that
G| ∂Bn

1 × I = H| ∂Bn
1 × I

G|Bn
1 × {1} ∪Bn

1/2 × I = identity

Proof: Let H̄ be as in previous Proposition, and let

k1 : Bn
1 × I → Bn

2 × I
k2 : Bn

2 × I → ∂Bn
1 × I × I ∪Bn

1 × I × {1}

be as in Corollary 31 and in Lemma 32. Let also

G = k−1
1 ◦k−1

2 ◦H ◦k2 ◦k1

Since H̄ =identity on

Bn
1 × I × {1} ∪ ∂Bn

1 × {1} × I ⊆ Bn
1 × T ′

it follows that G is the identity on

k1 ◦k2(B
n
1 × I ∪Bn

1/2 × I)

And since H̄ is the identity on

k2k1(B
n
1 × {1} ∪Bn

1/2 × I) = Bn
1 × I × {1} ∪ ∂Bn

1 × {1} × I ⊆ Bn
1 × T ′

it follows also that G is the identity on

Bn
1 × {1} ∪Bn

1/2 × I XxXx

Let
H(x, t) = (H1(x, t), H2(x, t)) ∈ Bn

1 × I



Crespin: PhD Thesis 44

then if x ∈ ∂Bn
1 we have

G| ∂Bn
1 × I = H| ∂Bn

1 × I
G|Bn

1 × {1} ∪Bn
1/2 × I = identity

Q.E.D.

Corollary 35: Let N be a PL n-ball, and

h : N × I → N × I

a PL isomorphism such that

h(N × {0}) = N × {0} h|N × {1} = identity

If f : Bn
1×I → N×I is any PL isomorphism such that f : Bn

1×{i} = N×{i},
i = 1, 2 then there is a PL isomorphism

g : N × I → N × I

such that
g| ∂N × I = h| ∂N × I

g| f(B1/2 × I) ∪N × I = identity

Proof: Let H = f−1 ◦h ◦f . One checks that the hypothesis of Proposition
34 are verified by H. Let G be obtained from H as in Proposition 34. Then
g = f ◦h ◦f−1 : N × I → N × I is the required PL isomorphism. Q.E.D.

Let Σn ∈ Ic(Mn) and recall the following notation: ϕ : Dn →Mn is a smooth
embedding used to form Mn#Σn as in page 18, and ψ : Dn → Mn is also
a smooth embedding, verifying ϕ(Dn) ∩ ψ(Dn) and y0 = ψ(0). f : Mn →
Mn#Σn is an i-diffeomorphism and H0 : Mn × I → Mn#Σn × I is a PD
concordance from f to 1.

To prove Proposition 18 the following six steps will be caried over:

Step 1: Modify f and H so that the paths t → (y0, t) and t → H(y0, t) are
homotopic relative endpoints.

Step 2: Modify H further to ensure that f̄ = H|Mn × {1/3} is a PL iso-
morphism and H|Mn × [0, 1/3] is a PD concordance from f to f̄ , such that
H =identity near {y0} × [0, 1/3].



Crespin: PhD Thesis 45

Step 3: Make H a PL isomorphism on Mn × [1/3, 1].

Step 4: Apply PL isotopy theorems to make H|{y0} × I = identity.

Step 5: Apply regular neighborhood properties so that H(N × I) = N × I,
for some PL ball N , y0 ∈ N .

Step 6: Apply Corollary 35 to make H = identity near {y0} × I, and adjust
the parameter t ∈ [0, 1].

The remaining of this section provides the details required for these steps.

Lemma 36: Let b : [0, 1]→Mn#Σn be a closed smooth path, b(0) = b(1) = y0,
such that

b([0, 1]) ∩ ϕ(Dn) = ∅

Then there is a smooth isotopy

H1 : (Mn#Σn)× I → (Mn#Σn)× I

such that
H1(x, 1) = (x, 1) for all x ∈Mn#Σn

and
H1(x, t) = (x, t)

for all x in some neighborhood of ϕ(Dn) and for all t ∈ [0, 1]

H1(y0, t) = (b(t), t)

Proof: Consider b : [0, 1] → (Mn#Σn) − ϕ(Dn) as an isotopy of the 0-
dimensional submanifold {y0} ⊆ Mn#Σn and apply the isotopy extension
theorem of Milnor, to obtain an isotopy H̄1 on (Mn#Σn) − ϕ(Dn) which
fixes points outside a compact set. Extend H̄1 via the identity in order to
obtain the isotopy H1on Mn#Σn. Q.E.D.

Lemma 37: Let Σn ∈ Ic(M
n then there is an i-diffeomorphism f : Mn →

Mn#Σn and a PD concordance

H2 : Mn × I → (Mn#Σn)× I

such that
t→ (y0, t) and t→ H2(y0, t)

are paths which are homotopic relative endpoints.
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Proof: H0 : Mn × I → (Mn#Σn) × I be as in page 44. Consider the path
b̄(t) = H0(y0, 1− t), which is not in general smooth but can be approximated
by a smooth path b(t) homotopic to b̄.

Apply Lemma 36 to b(t), to obtain an isotopy H1 such that

H1(x, 1) = (x, 1)

for all x ∈Mn#Σn

H1(x, t) = (x, t)

for all x in some neighborhood of ϕ(Dn) and for all t, and

H1(y0, t) = (b(t), t)

for all t. Define now

H2(x, t) =

{
H0(x, 2t− 1) for 1/2 ≤ t ≤ 1
H1(f(x), 2t) for 0 ≤ t ≤ 1/2

Then h2 is a PD concordance and t → H2(y0, t) is the composition of the
path

t→ H0(x, t) = (b̄−1(t), t)

with
t→ (b(t), t)

Since b is homotopic to b̄, it follows that

t→ H2(y0, t)

is homotopic to
t→ (y0, t)

relative endpoints. Q.E.D.

Lemma 38: With the same hypothesis as in previous Lemma, there is a PD
concordance H3 satisfying besides the properties of H2 the following:
H3(X, 0) = (X, 0) for all xin some neighborhood of y0.

Proof: By continuity of H2 and the fact that H2(y0, 0) = (y0, 0) there is
some ε > 0 such that

H2(ψ(εDn), 0) ⊆ ψ(Dn)× {0}
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Applying Palais-Cerf Lemma, there is a smooth isotopy

G : (Mn#Σn)× I → (Mn#Σn)× I

such that G is the identity outside ψ(Dn)× I,

G(x, 1) = (x, 1) for x ∈Mn#Σn

G(H2(x, 0)) = (x, 0) for x ∈ ψ(εDn)

Define H3 as H3(x, t) = G ◦H2(x, t) for all x and all t. Since G keeps everyt-
hing fixed outside ψ(Dn)× I it follows that

t→ H3(y0, t) t→ H2(y0, t)

are homotopic relative endpoints and the other properties of H3 are straight-
forward. Q.E.D

Lemma 39: Let f : Mn → Mn#Σn be an i-diffeomorphism and let α : K →
Mn be a smooth triangulation. Then there is a PL isomorphism (on α)

f̄ : Mn →Mn#Σn

and a PD isotopy H4 from f̄ to f such that H4 is the identity on ψ(Dn)× I.
Proof: Consider f ◦α : K → Mn#Σn and α : K → Mn#Σn. These
maps are smooth triangulations. Since f |ψ(Dn) =identity, it follows that
α−1 ◦f ◦α : K → K is the identity on α−1ψ(Dn), in particular α−1 ◦f ◦α
is PL on α−1ψ(Dn). According to [Munkres 1] there is, for any δ > 0 a
δ-approximation to α

β :→Mn#Σn

which is a smooth triangulation satisfying

β|α−1ψ(Dn) = α|α−1ψ(Dn)

and β−1 ◦f ◦α : K → K is a PL isomorphism. Define

f̄ = α ◦β−1
◦f : Mn →Mn#Σn

Since
α−1f̄α = β−1fα

f̄ is certainly a PL-isomorphism.
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Consider now the smooth maps

f ◦α : K →Mn#Σn

and
f̄ ◦α : K →Mn#Σn

then
f̄ ◦α|α−1(ψ(Dn)) = f ◦α|α−1(ψ(Dn))

Let δ′ > 0. If δ in the paragraph above is small enough, then f̄ is a δ′-
approximation to f . Applying now [Munkres 1] 10.9, provable in a relative
form using [Munkres 1] 5.15, there is a smooth isotopy

F̄ : K × I → (Mn#Σn)× I

satisfying
F̄ (x, 0) = (f̄(x), 0)
F̄ (x, 1) = (f ◦α(x, 1)

F̄ |α−1(ψ(Dn))× I = α× 1I

Define H4 by
H4(y, t) = F̄ (α−1(y), 0)

then
H4(y, 0) = F̄ (α−1(y), 0)

= f̄ ◦α ◦α−1(y, 0)
= (f(y), 0)

and
H4(y, 1) = F̄ (α−1(y), 1)

= f̄ ◦α ◦α−1(y, 1)
= (f(y), 1)

and for y ∈ ψ(Dn)
H4(y, t) = F̄ (α−1(y), t)

Q.E.D.

Lemma 40: Let Σn ∈ Ic(Mn). Then there is an i-diffeomorphism f : Mn →
Mn#Σn and a concordance H5 from f to the identity satisfying

H5|Mn × [1/3, 1] is a PL isomorphism
H5|ψ()× [0, 1/3] = identity
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and the paths
t→ (y0, t) 1/3 ≤ t ≤ 1
t→ H5(y0, t) 1/3 ≤ t ≤ 1

considered as paths in (Mn#Σn)× [1/3, 1] are homotopic relative endpoints.

Proof: Let H3 be the concordance from an i-diffeomorphism f to the iden-
tity constructed in Lemma 38 and let H4 be the concordance constructed for
f in Lemma 39. Define H5 by

H5(x, t) =


H4(x, 3t) if 0 ≤ t ≤ 1/3
H4(x, 2− 3t) if 1/3 ≤ t ≤ 2/3
H3(x, 3t− 2) if 2/3 ≤ t ≤ 1

one checks directly that H5 has the required properties. Q.E.D.

Lemma 41: Let Σn ∈ Ic(Mn). Then there is an i-diffeomorphism f : Mn →
Mn#Σn and a concordance H6 from f to the identity such that H6(y0, t) =
(y0, t) for all t and H6 is PL in a neighborhood of {y0} × I.
Proof: Let H5 be as in Lemma 46, then consider H5|Mn×1/3, 1] which is a
PD isomorphism. It follows from section 3.1 that there is a PL isomorphism

G1 : Mn × [1/3, 1]→Mn#Σn × [1/3, 1]

which is a δ-approximation to H5 and such that

G1|Mn × [1/3, 1] = H5

Let H̄5 : Mn × [0, 1]→Mn × [0, 1] be defined as

H̄5|Mn × [0, 1/3] = H5

H̄5|Mn × [1/3, 1] = G

If δ is small, the PL paths

t→ H̄5(y0, t) t→ H5(y0, t)

are homotopic in Mn#Σn × [1/3, 1] relative endpoints. Therefore,

t→ H̄5(y0, t) t→ (y0, t)

are PL-homotopic in Mn#Σn× [1/3, 1] relative endpoints. Since dimMn ≥ 3
these paths are PL isotopic relative endpoints ([Hudson]). Therefore by the
PL-isotopy extension theorem there is a PL isotopy

H7 : (Mn#Σn)× [1/3, 1]→ (Mn#Σn)× [1/3, 1]
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such that H7 =identity on

(Mn#Σn)×{1/3, 1}×[0, 1]∪(Mn#Σn)×[1/3, 1]×{1}∪ψ(Dn)×[1/3, 1]×[0, 1]

and
H7(y0, t, 0) = (H̄5(y0, t), 0), 1/3 ≤ t ≤ 1

Define (H7)1 by ((H7)1(x, t), 0) = H7(x, t, 0). Let

H6(x, t) =

{
H5(x, t) if 0 ≤ t ≤ 1/3
(H7)

−1
1 H̄5(x, t) if 1/3 ≤ t ≤ 1

Then H6 is a PD concordance from f to 1 which is the identity {y0} × I.
Since H6 is PL on Mn#Σn × [1/3, 1] and H6 =identity on ψ(Dn) × [1/3, 1]
the Lemma follows. Q.E.D.

Lemma 42: Let Σn ∈ Ic(Mn), then there is a concordance H8 : Mn × I →
(Mn#Σn) × I from an i-diffeomorphism f to the identity and a PL ball
N ⊆ ψ(Dn) with y0 ∈ int (N), such that H8(N × I) = N × I and H8|{y0} ×
[0, 1] =identity.

Proof: Let H6 be as in previous Lemma. By continuity of H6 there is some
PL ball N with y0 ∈ int (N) ⊆ ψ(Dn) such that

H6(N × [0, 1]) ⊆ int (ψ(Dn)× [0, 1])

Since H6 is PL on ψ(Dn)× [0, 1] we have that H6(N × [1/3, 1]) is a regular
neighborhood of {y0} × [1/3, 1] which meets (Mn#Σn)× [1/3, 1] along N ×
[1/3, 1] and N × {1}. By uniqueness of regular neighborhoods, ([Hudson],
page ) we can modify H6|N × [1/3, 1] via a PL isotopy to obtain a new PL
isotopy relative ∂(Mn × [1/3, 1]), in order to obtain a new PL isomorphism

H̄6 : Mn × [1/3, 1]→ (Mn#Σn)× [1/3, 1]

such that
H̄6|∂(Mn × [1/3, 1]) = H6

H̄6|N × [1/3, 1] = N × [1/3, 1]
H̄6|{y0} × [1/3, 1] = identity

Define H8 : Mn × I → (Mn#Σn)× I by

H8|Mn × [0, 1/3] = H6

H8|Mn × [1/3, 1] = H̄6
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Then H8(N× [0, 1]) = N× [0, 1] and H8| = {y0}× [0, 1] =identity. Making an
appropriate change of parameter t, it can be assured that H8|Mn× [0, 1/3] =
f × 1[0,1] and H8|Mn × [2/3, 1]=identity.

Proof of Proposition 18: Let H8 be as in Lemma 42. Then h = H8|N ×
[0, 1] satisfies the hypothesis of Corollary 35. Let g be the PL isomorphism
constructed from h in Corollary 35, and let U ⊆ N be a neighborhood of y0

such that g|U × I =identity.

Define H as
H|N × [0, 1] = g
H|(Mn −N)× [0, 1] = H8

ThenH|U×[0, 1]∪Mn×[2/3, 1] =identity andH|Mn×{0} is an i-diffeomorphism.
Q.E.D.
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6. Low dimensional cases
6.1.- Using the exact sequence

0→ Ic(M
n)→ Θn → [Mn, PL/O]

and a Postnikov tower for PL/0 it can be proved that Ic(M
n) = 0 for n = 7

and for n = 8.

6.2.- In dimension n = 9, Θ9 has 8 elements. Applying Theorem 21, it follows
that for any spin manifold M9, Ic(M

9) does not contain the Kervaire sphere
Σ9

0.

In case M9 is not spin we do not know the answer. Also, since ρ8,1 6= 0 ([Bre-
don]), ρ̄8,0 6= 0 and Theorem 26 implies that there is a manifold W 9 with
Ic(W

9) ⊇ ρ̄8,0 6= 0.

6.3.- In dimension n = 11, since bP11 = Θ11
∼= Z910 Theorem 17 implies that

for any spin manifold M11, Ic(M
11) = 0. In case M11 is not spin, again Theo-

rem 17 implies that Ic(M
11) has at most t11/t

′
11 = 32 elements; we do not

know if an M11 exists such that Ic(M
11) 6= 0. Also, since CokerJ11 = 0 Theo-

rem 28 implies that ρ̄n,k−1 = 0 whenever n+k = 11 and π′n+k−1,n−1 = πn+k,n−1

(see section 4.2).

6.4.- In dimension n = 15, CokerJ15
∼= Z2, which implies by Theorem 17 that

for any spin manifold M15, Ic(M
15) has at most 2 elements, and the Milnor

sphere is not in Ic(M
15).

In case M15 is not spin, since gR(Σ15
0 ) = 1 6= 0, Theorem 17 implies that

Ic(M
15) does not contain Σ15

0 , and in fact, Ic(M
15) has at most t15/t15 = 128

elements. Again, we do not know if Ic(M
15) can actually be that large.

Since ρ14,1 6= 0 ([Bredon]), ρ̄14,0 6= 0, and there is a manifold W 15 with
Ic(W

15) ⊇ ⇒ ρ̄14,0 6= 0.

6.5.- For n = 17, Θ17 has 16 elements and CokerJ17 has 8 elements. Therefore,
Theorem 21 implies that Ic(M

17) has at most 2 elements if M17 is spin. Since
ρ16,1 6= 0 (ibid), ρ̄16,0 6= 0 and Theorem 25 implies that there is a manifold
W 17 with Ic(W

17 ⊇imageρ̄16,0 6= 0.

The data used about Θn, bPn+1 and CokerJn are taken from [Kervaire-
Milnor].


