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ABSTRACT

INERTTA GROUPS OF MANIFOLDS

(A Dissertation presented to the Faculty
of the Graduate School of Arts and Sciences
of Brandeis University, Waltham, Massachusetts.)
by
Daniel Crespin Bryden

Inertia and concordance inertia groups of smooth manifolds are studied.

Geometric constructions, an invariant frp of Brumfiel and certain invariant
gr deduced from it are used.

It is proved that for any oriented smooth manifold M*"~! the concordance
inertia group I.(M*"~!) is a proper subgroup of ©y,_1, in fact, it does not
contain the Milnor sphere.

Then a certain pairing py, ;1 with domain ©,, X m,,_1(S"!) and values in
0,1 is constructed and related to concordance inertia groups.

There is always a manifold W"* having concordance inertia group contai-
ning the image of p,, ,—1. We prove also in a number of cases that the image
of pp -1 1s away from bP, ;.
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INTRODUCTION.

In this work the inertia groups and the concordance inertia groups of mani-
folds are studied. This has been done previously in [Browder|, [Brumfiel 3],
[Kosinski|, and [Munkres 2]. Most results obtained here are about concor-
dance inertia groups. The techniques used are based on geometric arguments
and on the results of [Brumfiel 1, 2, 3]. The work is organized as follows.

In Chapter 1 preliminary material is presented. This consists of the following:
First, some well known properties of homotopy spheres. Then a brief review
of characteristic classes and numbers. Next a description of Brumfiel’s theo-
rems and his invariants, which are basic in this work. Finally, a theorem of
Anderson-Brown-Peterson is stated and Bredon’s pairing is described.

In Chapter 2 an integrality theorem —Theorem 6— for the index of certain
manifolds is proved using Brumfiel’s and Anderson-Brown-Peterson’s results.
By means of Theorem 6 a certain invariant gz becomes computable in many
cases. Related results are proved.

In Chapter 3 piecewise differentiable (abbreviated PD) maps are discussed.
Next, inertia groups are defined and i-diffeomorphisms (see page 21) are
proved to exist. We give then upper bounds for the inertia groups of certain
manifolds (Proposition 14). Then concordance inertia groups are defined and
upper bounds are given for them. In particular it is proved that for any
closed orientable manifold M**~! the Milnor sphere, ¥3" !, is not in the
concordance inertia group I.(M*"~1).

In Chapter 4 a pairing p, ; is constructed. This is closely related to Bredon’s
pairing p, i, and to Milnor-Munkres-Novikov pairing 7, ;. In Theorem 25 a
relationship is obtained between the image of p,, , and the concordance inertia
group of a manifold W"**, the relationship being homotopy theoretical. From
this it follows (Theorem 26) that the image of p,  is always contained in
the concordance inertia group of some manifold. Finally, applying results of
Chapter 2, conditions on the image of p,  are obtained which imply that
for certain values of n and k the images of p, ; and of p, ; can be described
completely in homotopy theoretical terms.

Chapter 5, where proposition 18 is proved, is mainly technical.

Chapter 6 presents some low dimensional calculations.
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0.- NOTATION.

The notation used is standard:

R" denotes n-dimensional Euclidean space.

D™ C R™ is the n-dimensional unit ball.

rD™ is the n-dimensional ball of radius r.

S7=1 C R™ is the (n — 1)-dimensional unit sphere.
rS"~! C R™ is the (n — 1)-sphere of radius r.
Dt ={(21,...,7,) € S" Yz, > 0}

D"t ={(xy,...,2,) € S" Mz, <0}

If X and Y are topological spaces, denote by [X,Y] the set of homotopy
classes of maps from X to Y.

If X is a path connected space with base point zy € X, then m,(X) is the
n-th homotopy group of X.

SO(n) is the rotation group of R™, SO(n) C SO(n + 1) and

SO = G SO(n)

n=1

J = Jgn  m(SO(n)) — mpyx(S™) is the J-homomorphism (see [Kervaire]).
If 77 = lfm,, 7, 1(S™) there is defined a J-homomorphism

Wk(SO) — 7T}§

Let Coker(J) = 7 /Tmage(Jy,).

t, is the integer

B,
t, = 22"72(22"~1 — 1) . a,, - numerator (—)
4dn
where B,, is the n-th Bernoulli number, a,, = 1 for even n and a,, = 2 for
odd n; see [Levine 2], page 22.

Let t! be the largest odd number that divides ¢,. It follows from a theorem
of Von-Staudt (cf. [Levine 1]) that

By,
! = (2*"' — 1) - numerator (4—)

n
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The term ‘piecewise linear’ will be abbreviated ‘PL’. For the definition of
PL isomorphism, PL ball, and other piecewise linear concepts see [Hudson].
All manifolds considered here are orientable, however, orientability will often
be stated explicitly.

References are made to author, with a number when necessary. For example
[Levine 2| refers to the second paper by Levine listed in the bibliography.
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1. PRELIMINARY MATERIAL

1.1.- HOMOTOPY SPHERES.
Denote by ©,, the group of h-cobordism classes of oriented smooth manifolds
which are homotopy equivalent to the sphere S™, with the group operation
induced by connected sum.

Denote by ©,,(1) the group of oriented diffeomorphism classes of smoothings
of S™, the group operation is induced by connected sum.

Denote by ©,,(2) the group of concordance classes of smoothings of S™ with
the group operation induced by connected sum.

Denote by 0,,(3) the group of concordance classes of orientation preserving
diffeomorphisms from the sphere S"~! to itself under the operation induced
by composition of diffeomorphisms.

Denote by 6,,(4) the group of concordance classes relative to the boundary of
orientation preserving diffeomorphisms f : D"~! — D"~! which are the iden-
tity on a neighborhood of the boundary D"~! = S"~2. The group operation
is induced by composition.

Homomorphisms that relate these various groups will be now described.
The obvious map 0,(1) — ©,, is a group homomorphism.

The map that assigns to a diffeomorphism class of smoothings the concor-
dance class of any of its representatives induces a well defined group homo-
morphism 6,(1) — 6,(2).

For a homomorphism ©,,(3) — ©,, proceed as follows. If f : S"~1 — Sn~1
is a diffeomorphism let ¥ be the homotopy sphere obtained by gluing two
copies of the n disk D™ along their boundaries via the diffeomorphism f.
Then f — X induces a well defined group homomorphism.

Finally, given a diffeomorphism ¢ : D! — D"~! which is the identity on
some neighborhood of the boundary, let A : D"! — S"~! be the embedding
given by

My, ) = (21,00, T, \/1 — (22422 )
and define
aly) = { Aogod™t(y) ify e A(D")
y if y ¢ A(D"71)
The correspondence ¢ — ¢ induces a well defined group homomorphism
©,(4) — 0,(3). All these group homomorphisms are isomorphisms in case
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n > 5. For more details see [Smale].
Recall now some well known facts about the structure of the group O,,.
0,, is an abelian group, finite if n # 3. O3 is unknown.

Let bP, 1 consist of those homotopy n-spheres which bound some paralleli-
zable (n + 1)-manifold, then:

For n # 1, bPy, is cyclic of order ¢, (see page 5) generated by an element
yan=! called the Milnor sphere, which bounds a parallelizable manifold of
index 8.

bP,, . is cyclic of order at most 2. The order is 2 if n # 2° — 2. The order is
1lifn =20, 2, 6, 14 or 30. The remaining cases are unsettled. In particular
bPs,+ 2 is cyclic of order 2; it has a generator 5"+ called the Kervaire sphere,
which bounds a parallelizable manifold of Arf invariant 1.

bPs, .4 is trivial for all n.

For n # 2' — 2 there is an exact sequence

0—bP,y1 — 6, z, CokerJ,, — 0

Here p’ is induced by the Thom-Pontriagin construction. For more details see
[Kervaire-Milnor] and [Levine2].

1.2.- THE SIGNATURE, CHARACTERISTIC CLASSES AND CHARACTERISTIC
NUMBERS.
Let M*" be an oriented closed manifold with orientation class [M*"] €

Hy, (M*™;Q). On H*"(M*"; Q) consider the quadratic form defined by cup
product

(2,y) = (z —y, [M™])
The signature, or index, of M4", s(M*"), is the index of this bilinear form.

This is an oriented cobordism invariant and
s(My"#My") = s(M{™) — s(My")

Let M*" be oriented with possibly non-empty boundary, dM4", and orienta-
tion class [M*"] € Hy, (M*", 0M*™; Q). On H*"(M* dM*";Q) consider the
quadratic form ¢ : (z,y) — (x — y, [M*"]). The one can extend the previous
definition to the relative case by setting s(M") =signature of q.

Let M{™, Mgy™ be compact smooth manifolds and f : M — IMF™ be
an orientation preserving diffeomorphism. Denote by M J,(—My") the
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manifold obtained from the disjoint union M}" + Mj" by identifying x € M{"
and f(x) € My™. Give to M{"™ J,(—Mg") the orientation induced from M;™.
One then has ([Sullivan], p. 6.11)

s(M" [ Mg™) = s(M™) — s(My™)
!

Also, if M{"]] Mj" denotes the connected sum along the boundary (see
[Kervaire-Milnor|) then s(M{™ [ MJ™) = s(M{") — s(My™).

Let £ be a vector bundle over a CW complex X. Then the i-th Stiefel-
Whitney class of &, w;(§) € H(X;Zs), is defined.

If M™ is a compact smooth manifold with tangent vector bundle 7y, the
i-th Stiefel-Whitney class of M™ is w;(M™) = w;(Tyn) € H'(M™; Zsy). Note
that w; is defined for manifolds with possibly non-empty boundary.

It is possible to extend the definition of w; to include all closed topological
manifolds, in particular to include closed PL manifolds. This is done using
the Wu classes and Steenrod squares. Recall that a smooth or PL manifold
M™ is spin if it is orientable and if we(M™) = 0.

Let 1 be an oriented vector bundle over a C'W complex X. Then the i-th
rational Pontriagin class of n, p;(n) € H*(X;Q), is defined.

If M™ is a compact oriented smooth manifold with oriented tangent vec-
tor bundle 7y then the i-rational Pontriagin class of M™ is p;(Tyn) €
H*(M™; Q). The rational Pontriagin classes are defined for smooth mani-
folds with possibly non-empty boundary, and they can be defined on all
closed PL manifolds using Hirzebruch signature theorem (see [Milnor]).

Let M*" be a closed oriented (PL or smooth) manifold with orientation
class [M*"] € H"(M*;Q). Consider partitions of n, i.e. finite sequences
w = (iy,...,14.) of positive integers such that i; + - - - + 4, = n. Then there is
defined a corresponding Pontriagin number of M4"

Po(M™) = Py (M) = (piy (M™) — -+ — i (M™), [M™]) € Q

This rational number is an integer if the manifold M?" is smooth. These
numbers are invariant under smooth oriented cobordism. Also, if two clo-
sed PL manifolds are PL cobordant (in particular if they are isomorphic)
then they have the same rational Pontriagin numbers. Recall that a Pon-
triagin number p;,..; (M*") is decomposable if r > 2. Note that if M is a
smooth compact manifold with non-empty boundary, the above definition is
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vacuous since Hy,(M*™; Q) is trivial. However, following [Ells and Kuiper]
it is possible to define decomposable Pontriagin numbers for certain mani-
folds with non-empty boundary. This is done as follows: Suppose M*" is a
smooth oriented manifold with boundary OM*". If for 0 < i < n — 1 the
homomorphisms

j* : H4i(M4",8M4”;Q) N H4Z(M4n,@)

induced by the inclusion of pairs j : (M, () — (M*" dM*") are isomorp-
hisms, define the relative Pontriagin numbers of M*" as

Pireiy (M) = (77 piy (M) = o= 7 (i, (M), [M]) € Q

where [M*"] is the orientation class of M*" in H*"(M* oM*™; Q). This
definition of Pontriagin numbers extends the previous one and applies when
OM* is a homotopy sphere.

These relative Pontriagin numbers have the following additive property: Let
M}™, Mj™ be compact smooth oriented manifolds for which relative Pontria-
gin numbers can be defined, then

po(M{" H My™) = po(M{™) = p,(My")
and if f: OM}" — OMy™ is a diffeomorphism then
Po(M{" Up My") = po(M{™) = pu(My")

1.3.- BRUMFIEL’S INVARIANT AND COBORDISM

THEOREM 1: [Brumfiel 1] a) Let W be a closed smooth spin manifold such
that all its decomposable Pontriagin numbers are zero, ie., pi,..., (W) =0,
r > 2. Then the index of W, o(W4"), is a multiple of 8t,.

b) Let X4"1 € ©4,_1 be a homotopy sphere, then there is a compact smooth
spin manifold My" with all its decomposable Pontriagin numbers zero and
such that OM{"™ = Y41 Moreover, for any such M{", 8 divides the index
o(Mi™).

As a consequence of this theorem Brumfiel defines a group homomorphism
IR Ou1 — Zy,

as follows. Let ¥%"~1 € Oy, ;. According to Theorem 1 b) above there is
a spin manifold W% with all decomposable Pontriagin numbers zero and
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such that OW*" = 34"~ Set now fr(2*"~!) = $0(W*") € Z,,. This is well
defined by a). Note that if ¥3" ! is the Milnor sphere then fr(¥g"" ') = 1.
Therefore for n odd, fg|bPy, is an isomorphism. For n even Brumfiel proves
that fr|bPy, has kernel 0 or Z,. But since the order of bPy, is t, for all n
(see page 5) the kernel is always 0, not Zs.

Identify now bP,, to Z;, (sending ¥3" ' to 1). Then there is a split exact

sequence
fr

0— bP4n : @471—1 — COkGI‘(J4n_1) — 0

There is also a group homomorphism

IR Ogny1 — Zo

defined in [Brumfiel 2]. We quote also the following result [Brumfiel 3].
PROPOSITION 2. a) If ES"H € Og,11 s the Kervaire sphere then

fr(Z") = 1€ Zs

b) Let W2 W2 be compact smooth 1-connected spin manifolds with
OWFnt2 = §8ntl gWEnt2 = v8n+l ¢ Qg 1. If there exists a PL isomorp-

hism of pairs
(8W18n+2, SSnJrl) N <W08n+2’ 28n+1)

then fr(X8"T1) = 0.
¢) Identify bPsy.o to Zy (sending 5" to 1) then fr : Ogny1 — Zo splits
the exact sequence

f
ir

0 — bPs;42 — Ogpy1 — Coker(Jgpi1) — 0

Let QI", Q%" and QS° denote the framed, Spin and oriented cobordism
rings ([Stong] and references quoted there), and let

fr Ex Spin
& =

. F,
prm QfO

denote the forgetful homomorphisms. It is well known that F, -G, = 0 in po-
sitive dimensions. The following result is taken from [Stong]; see also [ABP]:
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THEOREM 3: (Anderson-Brown-Peterson) a) The homomorphism E, : Q/" —
Q5Pin has image Zsy in dimensions 0, 8k + 1 and 8k + 2. The image is zero
otherwise.

b) The homomorphism F.®1 : Q5P QZ[3] — Q9 QZ[3] is an isomorphism.

1.4.- BREDON’S PAIRING

There is a map ppi @ O, X T4k (S™) — O,4y defined by [Bredon|. The
definition is as follows:

Let (X" a) € O, X 1, (S™) with 3" represented by a diffeomorphism A :
Sn=t — S™=1 and note that h can be assumed to be the identity outside
an (n — 1)-ball imbedded in S™~!. Choose a framed submanifold (M* F) of
Stk whose framed cobordism class corresponds to a. Take a closed tubular
neighborhood T of M* in S"** and let f : M* x D™ — T be a diffeomorphism
corresponding to the framing F. Form the disjoint union (S"** —intT) + T
and identify x € 9T = 9(S"** —intT) to fo(1 x h)«f~(z) where 1 X h :
MF x §»=1 — MF x S"~1. The resulting manifold is clearly a homotopy
(n+ k)-sphere and determines an element p, (X", @) € ©,,44. It is proved in
[Bredon] that p,,  is well defined, as well as the following:

PROPOSITION 4: (Bredon) a) If k — 1 < n then pyy is bilinear.

b) Let p’ : ©, — CokerJ, be the map induced by Thom Pontriagin construc-
tion (see [Kervaire-Milnor]) and for k—1 < n let ¢ : CokerJ, X m,,x(S™) —
CokerJ,, 1 be induced by composition, then the following diagram commutes:

@n X 7Tn+k<sn) Pn_,k) @n+k

px1] L7y

¢ : CokerJ,, X m,.1(S™) <, Coker.J,,

The condition k—1 < n on part b) is necessary to define ¢ and to prove that
the diagram commutes.
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2. THE INVARIANT gg

2.1.- DEFINITION OF gr AND BYPRODUCTS

First we state and prove the following consequence of Theorem 3.
PROPOSITION 5: Let W4 be a closed oriented smooth manifold, then there
is some closed spin manifold X" and an integer ¢ > 0 such that 2°[W"] =
[(X47] in Q50.

PROOF: By Theorem 3, F,®1 : Q¥P"QZ[1] — Q9 ®Z[L] is an isomorphism.
Therefore there are spin manifolds X;™ and numbers a; = m;/2"% € Z[1],
i=1,...,s such that (W] @1 =37 |[X!"]®aq in QF°QZ[3]. I bis a
large enough integer then 2'a; is an integer for all i. Therefore

Wi 1 = S [XM" ® 2%,
= D 2aX el

in Q99 ® Z[3]. Let Y*" be the spin manifold (disjoint union) Y7, 2°a; X",
then (2°[W*]—[Y*"])®1 = 0in Q9 ®Z[3] hence 2°[W*"]—[Y*"] is a 2-torsion
element in Q9 that is, there exists some integer d such that 20T4[IW4"] —
24[Y4"] = 0 in Q9. Take X% = 22V and ¢ = b+ d Q.E.D.

Let ¢, and ¢, be as in pages 2 and 3.

THEOREM 6: Let W4 be a closed oriented smooth manifold with all decom-
posable Pontriagin numbers zero. Then t!, divides the index o(W4").

PROOF: By previous proposition there is a spin manifold X" such that

2¢ W4 is cobordant to X4, Then o(X*" = 2¢o(W*™ and p,,(X*") = 2¢p, (W) =

0. By Theorem 1, 8¢, divides o(X*") and therefore ¢/, divides o(W*") Q.E.D.

PROPOSITION 7: Let W4 be a closed oriented smooth manifold with all de-

composable Pontriagin numbers zero, then p,(W*) is a multiple of r, =
odd part of (2n — 1)! - denom (B, /4n).
PRrROOF: By the Hirzebruch index theorem (see [Hirzebruch], pages 12 and
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86)

" 22n 22n—1 -1

47’L 22n(22n71 _ 1) Bn .
- (2n)! An " Pr

2*m1(22771 — 1) num (B,/4n)
@n—1)  denom (B,/4n) P»

92n+1 2Ct;
(2n — 1) denom (B, /4n) "

2n+-c+1 /
M .

oy, Pm

!
_ 2n+c—d+1 t
2 ﬁ *Pn
From this one obtains

o (W)

92ntetdtl
t/
n

Pn = *Tn

By previous proposition o (1W/4")/t! is an integer, and since r,, is odd it follows
that r,|p, Q.E.D.

REMARK: r, > (2n—1)-(2n—3)---3- 1.

COROLLARY 8: Let OW{" = ¥4~1 € ©,, 1, where W™ is compact, oriented
and has all decomposable Pontriagin numbers equal to zero, then

8fr(Z" ) = o(W) mod ¢/,

PROOF: Let OW"™ = X4"~! where W™ is spin and has all decomposable Pon-
triagin numbers 0 (see Theorem 1). Form the manifold W*" = W§"U(—W;")
where f: W™ — OW{" is an orientation preserving diffeomorphism. Then
the decomposable Pontriagin numbers of W4 are p,(W*") = p,(W;" U
(=Wi) = p,(Wy™) — p, (W) = 0 — 0 = 0 and the index is

o(Wi) = o(Wy") — o(W}")
= 8fp(X ) — o(Wim) € Zy
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By Theorem 6, ¢/, divides o(W4"), therefore 8fz(X'" 1) = o(W{")mod?,
Q.ED.

It is always possible to define the following group homomorphism gg : O4,_1 —
Zy : For ¥4 1 € Oy, 1 define gr(X*1) as fr(Z*"!) mod ¢, that is, as
the image of ¥4~! under the composition

Oun1 B 7y, — Lus

where the last arrow is the canonical projection.

Although ggr is a coarser invariant than fr its significance stems from the
fact that, according to Corollary 8, gr(X*"~!) can be computed from any
compact oriented (not necessarily spin) W™ with boundary X%, For any
such W{" one has

gr(E"Y) = (1/8)0 (W) € Zy,

Note that (1/8) € Z; because ¢}, is odd. Also, if £3" " is the Milnor sphere
then gr(Xg" ') = 1.

It is possible to extend further the definition of g as follows. Let M*"~! be
a closed oriented smooth manifold satisfying the following conditions:

a) OW = M4~ for some compact, oriented and smooth manifold W.
b) Relative decomposable Pontriagin numbers of W% can be defined (see
p.17) and are all zero.

Define then )
gs
PROPOSITION 9: The value gr(M**~') € Zy, depends only on the oriented
diffeomorphism class of M*"~1.

PROOF: Let Wi, W™ be 4n-manifolds with oW = M*"~1 i = (0,1 and
consider any orientation preserving diffeomorphism f : M*"~t = W /in —
M = gWn.

Form the smooth oriented manifold W*" = Wi | ,(=Wg") then W*" is clo-
sed, oriented and has decomposable Pontriagin numbers p,,(W*") = p,,(W{")—
p.(W§")=0—-0=0.

Theorem 6 states that o (W) is divisible by ¢/, and since o(Wy") —o(W{") =
o(W4) and ¢/, is odd, it follows that (1/8)c(Wy") = o(W{") mod t,,, Q.E.D.

gr(M*"™ 1) = = s(W*) mod t/,
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PROPOSITION 10: If My" ™, M}"! are bE,, manifolds then
gr(MY" (=M™ ) = gr(M"™") — gr(My" ™)

PROOF: Let Wi, W™ be Ej,, manifolds with oW " = Mj", oWi" =
M=t Then Wi [[(=Wg ") has boundary O(Wim [[(—=Wim)) = M (— Myt
and therefore

gr(M{" (=M™ Y) = (1/8)a (Wi [T(=Wy™)
(1/8)a (Wi™) — (1/8)a(W5")
= gr(M{"™") — gr(Mg" ™)

Q.E.D.
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3. INERTIA AND CONCORDANCE INERTIA GROUPS

3.1.- PD MAPS .

We discuss here PD maps. For the definition of rectilinear cell complex,
smooth triangulation of a smooth manifold, etc. see [Munkres 1] Chapter 2.
Let K be a rectilinear cell complex, M, N smooth manifolds and o : K —
M a smooth triangulation. A map f : M — N is piecewise differentiable,
abbreviated PD on the triangulation « if f o« : K — N is smooth on each
simplex of some subdivision K’ of K. When there is no danger of confusion,
the triangulation a on which f is PD will not be mentioned explicitly.

The map f: M — N is a PD isomorphism if for some subdivision K’ of K
the map foa: K’ — N is a smooth triangulation of NV

Let o € M™ and let f: M™ — N™ be a homeomorphism with the property
of being a diffeomorphism on M™ — {zo}. If o : K — M™ is a triangulation
of M™ let K’ be a subdivision of K such that a~!(zg) is a vertex of K’ (such
triangulation always exists) then fo.a : K’ — N™ is a smooth triangulation
of N™ and therefore f is a PD-isomorphism on any a.

Let n: K — Lbea PL isomorphism and § : L — N™ a smooth triangulation
of N™. There is a subdivision K’ of K and a subdivision L’ of L such that n
carries each simplex s of K’ onto some simplex t of L’ via a linear isomorp-
hism. Since 3 : L — N" is a smooth triangulation it follows that F.n is a
diffeomorphism on each simplex o of K’. Therefore 3.7 is a diffeomorphism
on each simplex s of K’ ([Munkres 1], 8.4).

Consider now triangulations
a:K—M", pg:L—N"
Suppose that f: M™ — N™ is a map such that
n=p"tofoa: K — L
is a PL isomorphism. By previous discussion it follows that
Bon=PB3-f ofoa=foa: K — N"

is a smooth triangulation of N". Therefore f is a PD-isomorphism on a.

Let « : K — M"™ [ : L — N" be smooth triangulations. Any map
f: M"™ — N™induces a map f? = 7'ofoa : K — L between triangu-
lations. If f is a PD isomorphism between the manifolds (in particular if f



Crespin: PhD Thesis 18

is a diffeomorphism) then f? is a PD-isomorphism between the complexes;
generally speaking f7 is not a PL map. However with arbitrarily small per-
turbations of § it is possible to obtain a PL isomorphism, and this can be
done without perturbing 4 on subcomplexes of K where 3 is already PL.
More precisely, assume that f? is a PL isomorphism on some closed sub-
complex A C K and let B = f?(A). Then, according [Munkres 1] 10.13,
there is for any 0 > 0 a d-approximation v : L — N™ to 3, which restric-
ted to B equals 3, 7|B = ( and such that fJ is a PL isomorphism. As a
consequence, if M"™ and N™ are P D-isomorphic then they are PL isomorphic

3.2.- INERTIA GROUPS.

For the remaining of this paper the manifolds M"™ under study will be assu-
med to have dimension n > 7. This requirement is necessary in order to have
fr to work and to be able to approximate certain maps by isotopies.
Consider the following particular presentation of the connected sum of a
closed connected smooth manifold M™ with a homotopy n-sphere ¥". Let

qg: Snfl N Snfl
be a diffeomorphism corresponding to >" and let
p: D" — M"

be an orientation preserving embedding with ¢(0) = .

To define the connected sum M"#3Y"™ define an atlas on M" as follows. On
M™ — {xy} take the atlas induced from the original smoothing on M". At
the point x( consider the chart

p-Cg o™ 1 p(D") — D"

Here

Cg~':D"— D"
is the cone extension of ¢g~! so that Cg~! is a homeomorphism, smooth
except at 0 € D™ This chart ¢ Cg~'op~! is compatible with the charts
on M™ —{xo}. So, we have an atlas on M™ and therefore a smoothing. The

topological manifold M™ with this smoothing is the connected sum of M"™ and
3" denoted M"#3". So M™ and M"#X™ are the same topological space.

The identity map 1pm : M™ — M"4#X™ is smooth except at zy and is
therefore a P D-isomorphism in any triangulation «, and 1pym o« @ K/ —
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M"#%™ is a smooth triangulation for some subdivision K’ of K. If M™ is
diffeomorphic to N™ (abbreviated M"™ = N") then M"#X" = N"#X" and
M" (S #25) = (M"4#57)#25

The inertia group of M™, I(M"), consists of those homotopy spheres such
that M™ = M"™#3™.

I(M™) is certainly a group. For let X" € I(M™), then

M"#(=5") 22 (MO#E")#(-5") = M #(S"#(-X")) = M 45" = M"

so that if £ € I(M™), then —X" € I(M")
Also, if X7, ¥ € I(M") then

MP#(THE) = (MM 4ED#T) = M 455 = M"

so that X7#X0 € I(M™). Hence I(M™) is a group.
Let X" € I(M™) so that there is an orientation preserving diffeomorphism

f: M™ — M"#¥". In what follows we use the notation of the first two
paragraphs of this chapter. We have that

fow: D" — M"#3"

and

foCg: D" — M"#X"

are orientation preserving embeddings. By the Palais-Cerf Lemma ([Milnor
3]) these embeddings are isotopic. By the isotopy extension theorem (ibid)
there is an ambient isotopy

hy : M"#Y" — M"#3"
such that hy =identity and
hiof=¢oCg:D" — M"#x"

Therefore f = hy o f : M™ — M"#¥" is a diffeomorphism such that
f(o(D")) = @(D"). Also, f and f are in the same isotopy class. If ¢ : D" —
M™ is another embedding with ¢(D™")N(D") = () we can use the Palais-Cerf
Lemma again and conclude thatf can be chosen so thatf =identity on some

neighborhood of ¥(D™). We have proved
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LEMMA 11: If X" € I(M™) , there is an orientation preserving diffeomorp-
hismf : M™ — M"#X" such thatf(p(D")) = o(D") andf = identity on
some neighborhood of ¥(D™).

Let M{ be Mg —int(e(D")). Then My is a smooth submanifold with boun-
dary of M and of M"#X". Suppose now that ¥" € I(M™) and letf : M™ —
M™#3™ be as in Lemma 11. From the definition of the smoothing on M"#X™

we have that the following composition is a diffeomorphism:
(+) D 2 p(D) 1) o (pry £ pr ) pr
Recall now that two orientation preserving diffeomorphisms
h,h:S" 1t — gt

are isotopic if and only if
h~toh:S" ! — gnt

extends to a diffeomorphism of D" ([Milnor 3]). Therefore, since
g o (¢ of opp)[SmT

extends by (*) to D", we conclude that g and ¢! of o ¢|S""! are isotopic.
Let g, : S"! — S™! be an isotopy between gy = g and g; = ¢~ of o ¢.
Then

gp_logto¢:aM61—>8Mg
is an isotopy between ¢! o go p: MY — OM and ot of o pop! =
floMg : OMF — OMY. Since f|OMg extends (by f) to Mg it follows from
[Palais| that

wogow ' OMY — OMY
also extends to M. Note that we can assume the extension to be the identity
on some neighborhood of 1(D™). We have proved half of the following
PROPOSITION 12: X" € I(M™) if and only if the diffeomorphism @ogop ' :
OMJ — OM extends to a diffeomorphism fo of M such that fy = identity
on some neighborhood of ¥(D™).
PROOF: It remains to consider the “if 7 part. Suppose that pogop™" : dMJ —
OM(' extends to a diffeomorphism h : M§ — MJ. Define f: M™ — M"#3"
as follows: Let f|M§ = h and let f|p(D") = h be

poCgop':p(D") C M™— p(D") C M "#5"
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then, checking with the chart ¢ o Cg~to ™! at 1y € M"#X", we have that
i M™ — M"#Y" is a diffeomorphism. QED

COROLLARY 127: X" € I(M™) if and only if there is a diffeomorphism f :
M"™ — M"™#X" such that

flo(D™) = ¢+ Cqop

and f = identity on some neighborhood of )(D").

PROOF: Let fy : M} — M] be as in Lemma 12, then f, extends to f : M" —
M43 if we let flp(D") = poCgop™! (check with the appropriate chart).
QED

A diffeomorphism f : M™ — M"#3>" satisfying the conditions of Corollary
127 will be called an ¢-diffeomorphism. We have proved

THEOREM 13: In any isotopy class of orientation preserving diffeomorphisms
i M™ — M™#3" there is an i-diffeomorphism. Q.E.D.

The following proposition provides an upper bound for the inertia groups of
some manifolds.

PROPOSITION 14: Let M*"~! be a closed, smooth, oriented and connected
manifold which bounds some manifold Wi™ satisfying b) of page 15. Then

I(M*"™1) C ker gg

PROOF: If M4n—1 == Mf4n—1454n=1 e have that
gr(M TS = gr(M™ ) — gp(B™7H)

Therefore

gr(Z*" =0 mod ¢,
Q.E.D.
3.3.- CONCORDANCE INERTIA GROUPS

The concordance inertia group of M", I.(M™) C ©,, consists of those ho-
motopy spheres ¥" such that for some triangulation o : K — M"™, M™ and
M"#5" are diffeomorphic via a diffeomorphism f : M™ — M"#¥%™ which is
PD concordant to the identity 1 : M™ — M"#>".

REMARK: Let PL/O be the space defined in [Milnor 4] and let M™ — S
be a degree one map. Consider a closed connected smooth manifold M™.
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There is a one-to-one correspondence between the set of concordance classes
of smoothings of M™ and the set of homotopy classes [M", PL/O] (ibid), in
particular, m,(PL/O) = ©,, ([Hirsch]). Then, the concordance inertia group
I.(M™) fits into an exact sequence of pointed sets

0—I.(M")—©,=[S",PL/O] — [M",PL/O]
Let the diffeomorphism f above be smoothly isotopic to a diffeomorphism
f i M" — M™#¥"™. Then f ~. f, and since f ~. 1 it follows that f ~. 1.

From Theorem 13, we know that there is an i-diffeomorphism f : M™ —
M"4#3™ smoothly isotopic to f, hence:

Proposition 15: X" € I.(M™) if and only if there is an i-diffeomorphism
oM™ — M"™#X™ which is PD concordant to the identity map.

Proof: The ‘only if” part is just the previous discussion. The ‘if” part is trivial.
Q.E.D.
Consider now MJ = M™ — int p(D"), OIMY = p(S™7!), ¥" € ©,, and g :
Sl §n=1 a corresponding diffeomorphism.
Proposition 16: If p og op™! extends to a diffeomorphism fo : MY — My such
that fo is PD isotopic to the identity 1y @ Mg — Mg, then X" € I.(M™).
Proof: Let F': My x I — Mg x I be a PD isotopy from fy to 1pn, on the
triangulation oy : Ky — M. First extend oy to a triangulation
a: Ko U Cone(0Ky) — M"

with a defined by the following condition:

a|Ko = ag al(t,z)] =t~ a(z)

where 0 < ¢t < 1, z € 0K, and [(t,z)] € Cone(0K)). For each t, let F; :
Mg — Mg be defined by

F(w7t) = (Ft(x)7t)

then hy : o 1o Fyop|S™1 0 S771 — S~ extends by the cone extension to a
map

Ch; : D" — D"

Let [} : M™ x {t} — M x {t} be the extension of F; defined by the following
condition B
Ft|()0(Dn) =@ oCht 090_1
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Then Fy is a diffeomorphism M™ — M"#%"™ (in fact, Folp(D") = ¢ oCgop™),
and F} =identity. Then the map F': M™ x I — M™ x I defined by

F(I7t) = (Ft(x)7t)

is a PD isotopy (on «) from the diffeomorphism Fy : M™ — M"#X" to
Tym : M™ — M"#3™. Therefore X" € I.(M™) Q.E.D.

3.4.- UPPER BOUND FOR [.(M*"~1)
Continue with the notations of 3.2, i.e., ¢ : D™ — D" is an embedding etc.

Define
Ar_:_—i_l = {(1’1, N N | € Dn+1 | Ln+1 Z O}

)
AEJFI = {(33'1, cee 7$n+1) S DnJrl ‘ Tnt1 < 0}
C

then AT U A" = Dntland DT C AT D* C A™ Consider now
smooth embeddings

er AT S MU X T ey s AT M T
defined as follows
er(x) = e (x1,. -, 1) = (p((1/6)ar, ..., (1/6)2n), (1/6)Tn 1)
e-(z) = e_(z1,. .., wnp1) = (9((1/6)a1, ..., (1/6)2n), 1+ ((1/6)zn41))
Note that if #, 1 = 0 then
e+(x) = (¢((1/6)x),0)
e—(x) = (¢((1/6)),1)

If on M™ x I (x,0) is identified to (z,1), the quotient space is a smooth

manifold naturally isomorphic to M™ x S'. So this quotient of M™ x I will
be denoted by M™ x S!.

If (x,t) € M™ x I, denote by [z, 1] its image on M™ x S' under the quotient
map. Consider

VP = M™ x I —int(ey (A7) Ue_(A™)

If on V™" (2,0) € V1 C M™ x I is identified to (z,1) € V"™ C M" x I,
the resulting smooth manifold will be the same as M™ x S!'—open disk and
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this quotient of V" will be denoted by (M™ x S1),. If (z,t) € V™! let
[z, t] denote its image on (M™ x S')o under the quotient map. Similarly, [A]
is the image of the subset A C V™*! Finally (M™ x S')y C M™ x S and
O((M™ x St)y) = S™.

Since (M™ x S')g = M™ x S'—open disk the index of (M™ x S1), is 0, for

s((M™ x SY)g) = s(M™ x S*) = s(M™)s(S*) =0
and for Pontriagin numbers
po((M" x SY)o) = pu(M™ x S*) = p,(M™ x 0D?) = p,(0(M™ x D*)) =0

Now let X" € [.(M™) and F : M™ x I — (M"#X") x I a PD concordance
between the i-diffeomorphism f : M"™ — M"#>"™ and the identity 1 : M" —
M™%, It may be assumed that

Fla,t) = (f(x),1) for0 < ¢ < (1/3)
and that
F(z,t) = (x,t) for(2/3) <t <1
Let X3t be the smooth manifold obtained from

Vil = M x T —int(ey (AT Ue (A™T)
= (M"#¥") x I —int(e (AT Ue_(A™M))

identifying (z,1) € V" to (f(z),0) € V™" This identification is well
defined since
fle(D") =@ -Cgeop™

OX5*1 is the manifold obtained from the disjoint union
e (D2) +e (D)

identifying
(2,1) = (¢((1/6)2),1) € 4 (S"7)
to
(f(2),0) = (fe((1/6)z),0)
(¢ Cgep™ op((1/6)2),0))
= (¢((1/6)g(x)),0) € e_(5"71)
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for each x € S™ 1.

This boundary is therefore diffeomorphic to the homotopy sphere " obtained
from the disjoint union D} + D™ identifying x € D% to g(x) € D".
An explicit diffeomorphism A : X" — 9XJ " is defined by

(h|D?)(x) = ey(x), x € DY
(h[D2)(z) = e (9(z)), =€ D

The PD concordance F' : M™ x I — (M"#X") x I restricts to a map
Vntl 5 VHl which induces a PD isomorphism of pairs

H : (M™ x S, 0(M™ x S%))) — (X2, 0X5+)

Therefore X3+ and (M™ x S')y are PL isomorphic. It follows that if n =
—1mod4, the index satisfies

S(X5) = s((M" x S%)o) =0

and
Pu(X3 ) = pu((M" x 8%)o) =0
for all w.
THEOREM 17: If M*"~1 is closed smooth and orientable manifold then

IC(M4n_1) g ker 9gr

If M*"=t is also spin then I.(M*"~1) C ker fg.

PROOF: Let 4"~ € I(M*~1) and let X3" be the manifold constructed abo-
ve, with 9X3" = 34~1 then XJ" has all decomposable Pontriagin numbers
and index equal to zero, hence gg(X" 1) = s(X3") =0 € Zy .

If M*"~!is spin, so are M*"~! x S* and (M*"~! x S1),. Since X3" is PL
isomorphic to (M*"~1 x S1),,

wa(X3") = wy (M x S1)g) =0

hence X3" is spin, and fr(¥* 1) = s(X3") =0 € Zy . Q.E.D.
In particular, the Milnor sphere ¥3" ! is not in I.(M**~') for any orientable

manifold M4"~!. Moreover since ker gz N bPy, consists of elements of order
2, it has at most 22"72. q,, elements, I,(M*"~1) N bPy, has at most 2**~2 . q,,
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elements which are all of order 2. If M*"~! is spin, since ker fr N bPy, = 0,
I.(M*=1) N bPy, = 0 for any spin manifold M1,

3.5.- UPPER BOUND FOR [.(M®"+1)
In order to prove results in dimensions = 1(mod 8) we need the next PRo-
POSITION. Assume the notation of 3.4 so that ¢,¢ : D" — M", p(D") N
P(D") =0, ete.
PROPOSITION 18: Let X" € I.(M™). Then there is an i-diffeomorphism
foM"™ — M"#3"
a PD concordance
FoM"x T — (M"45") x I
and an open set
UC (D) yo=1v(0)
such that
F|U x TUM™ x [(2/3),1] = identity
and F(z,t) = (f(x),t) for 0 <t <1/3.
PROOF: The proof will be postponed until Chapter 6.

It can be assumed above that U is an n-disk in M". Let

A = UxTUM™x((2/3),1) C Vntl
B = {y} x TUM"x {11/12} C A’

Since f|i)(D") is the identity, and U C 1 (D"), the image [A'] of A’ under
the identification map V"1 — (M™ x I), is equal to its image under the
identification map V"' — XJ*'. Call A this common image. Then A is
naturally isomorphic to

Ux S*U[M™ x (2/3,1)]

and is an open submanifold of both (M™ x I)y and X5

Since B C A’| if we call B the image [B] of B’ under either identification
map, we have that B C A. B is canonically isomorphic to

{yo} x S*U[M™ x {11/12}]
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and B is a strong deformation retract of A. Note that since the PD isomorp-
hism
F:M"xI— M"xI

satisfies F'|A" =identity, then the PD isomorphism
H:(M"x Shy — Xyt

induced by F satisfies H|A =identity.

Next, surgery will be used. References for this are [Milnor 6] and [Kervaire-
Milnor].

In order to apply theorem 2b) surgery will be performed to (M™ x S')y and
X1 to kill the fundamental groups and get simply connected manifolds

Wit and Wt such that W = S and oWyt = ¥

It will be proved that the surgery can be performed inside A so that the PD
isomorphism H ‘extends’ to a PD isomorphism W' — Wy Also, it will
be shown that if M™ is a spin manifold then W;"*! (and therefore W;'t) is
also a spin manifold, if the surgery is performed carefully enough. Choose as
base point * = [(yo, 11/12)].

LEMMA 19: The inclusion ig : B — (M™ x S')q induces an epimorphism
7T1(B) — 7T1((Mn X Sl>0)

PROOF: (M" x S')g = M™ x S'—open disk. Since n > 7 (in fact n > 2
suffices), the inclusion

(M™ x SYy € M™ x S*
induces an isomorphism
T ((M™ x SY)o) — m(M™ x SY)
Henceforth, to prove the Lemma it suffices to prove that
71(B) — m(M"™ x S*)

is an epimorphism. But 7 (B) is the free product of m (M"™) x {11/12} and
m({yo} x S'), and the diagram

M" x {11/12} == M™ x S* 55 {yo} x S*
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(the arrows are inclusions and projections) gives a direct product diagram
m(M" x {11/12}) == m(M" x 8*) = m ({yo} x SY)

therefore 7y (B) — m(M™ x S') is an epimorphism. Q.E.D.
LEMMA 20: Any map S* — M"™ x St is homotopic to an embedding S* — A.

Proor: By Lemma 19, any map S' — M" x S' is homotopic to a map
S — B C A. Since n > 7 and A is open, any map S' — B is homotopic to
an embedding ST — A. Q.E.D.

Let S}, i=1,...,r be copies of the circle S, and 3; : S} — A C (M" x S'),
embeddings representing a set of generators of 71 ((M™ x S1)g). Since n > 7,
we can assume the embeddings have disjoint images. Let f; : St — A C
(M™% S")o be a”thickening.°f 3;, i.e., 3;(x,0) = f;(x). These thickenings exist
since the normal bundle of 5;(S}) in A is trivial (manifolds are orientable).
Also, assume the §; have disjoints images. Then H.3; : S! — A C X7+
are embeddings, which represent a set of generators of 71 (X3 "), and with
thickenings H -3;. The trace of the surgery on (M™ x S') based on the
embeddings f; is the manifold Z7*2 obtained from

D?x D"U---UD?>x D"+ (M" x S*)g x I

identifying z € S} x D" C D? x D" to (3i(z),1) € (M™ x SY)y x {1} C
(M™x SY)gxI. Then Z""2 is a smooth manifold except along certain corners,

and
0712 = M™ x S* x {0} u S* x TUWH!

where W[ is a 1-connected smooth manifold with W™ = S" x {1}.

Similarly, there is a trace Zy*? of the surgery on X3t along H of3; with
0Zit? = Xyt x {0} u X x uwt!

where W3 is a 1-connected smooth manifold with W3 = ¥* x {1}.

The PD isomorphism H : (M"xS%)y — X3! is the identity on A. Therefore
Hx1p: (M™% SYYg x I — Xyt x T
extends by the identity to give a PD isomorphism Zy*? — Zy*'. By res-

triction this gives a PD isomorphism (W[ oW — (Wit owpth.
Therefore there is also a PL isomorphism between these manifolds.
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Recall that an orientable manifold is spin if and only if it is 2-parallelizable.
If M™ is spin, so is M™ x S'. Therefore (M™ x S'), is also spin, therefore
2-parallelizable. But in [Milnor 6] it is shown that the thickenings f; can be
chosen so that Z]'*? is 2-parallelizable and therefore spin. Therefore W™ is
also spin. Since W3t is PL isomorphic to W, Wi is also spin.
THEOREM 21: Let M®*! be a closed connected smooth manifold. If M®*1
s spin then

FRUI(M™1)) =0

PROOF: Let X8t € [ (M®*1). Then there are 1-connected smooth ma-
nifolds W2 W2 with W2 o g8+l gyyint? o yi8n+l and a PL
isomorphism of pairs

(W32, oW 2) 2= (W52, g 2)

and applying PROPOSITION 2b) we get fr(3*"™1)=Q.E.D.



Crespin: PhD Thesis 30

4. THE PAIRING py,

4.1.- DEFINITION OF THE PAIRING AND ITS PROPERTIES
In this section we construct and study a bilinear map

ﬁn,k—l : @n X 7Tn+k—1(Sn_1> - @n+k
which turns out to be an extension of the pairing
Tk : On X (SO — 1)) — Oppp

of Milnor-Novikov (see [Lashof]).
The pairing p, x—1 is in fact a stable version of the map p,, ; of [Bredon)].

We will relate p,, ;-1 to concordance inertia groups and use the results of
previous sections to prove some consequences.

Consider a manifold W™kl and a framed submanifold (M*, F). In case
OWnHk=1 £ () and OMP* # () we will require that M* N OW" =1 = 9MP* the
intersection being transverse. Let g : D" ! — D" ! be a diffeomorphism,
such that g =identity on a neighborhood of S"2 = 9D""!. Take a closed
tubular neighborhood T of M* in W"*+*=1 and let

f:MFx DV ST

be a representation corresponding to the framing F. Let g -(M*, F) be the
following diffeomorphism of Wn+k—1:

On T let go(M* F) be fogof~! and on W=t — T let go(M* F) be the
identity. This makes sense since g =identity on a neighborhood of S"~2 =
OD" . Tt follows readily from the tubular neighborhood theorem that the
concordance class of g.(M* F) is independent of the particular tubular
neighborhood T', and representation f corresponding to F', chosen for the
construction.

Suppose now that ¢’ and ¢ are diffeomorphisms of D"~ which are concordant
via a concordance

H:DV'x I —-D'lxI

with H =identity on a neighborhood of S™"~2 x I. Then one can carry H
via 1+ X f to a concordance between g o(M* F)|T and ¢’ -(M*, F)|T and
this concordance can be extended by the identity to a concordance between
go(M" F)and ¢’ «(M*, F). So that the concordance class of g - (M* F) does
not change if we change ¢g within its concordance class.
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If 3™ is a homotopy sphere, let
qg: Sn—l N Sn—l

be a corresponding diffeomorphism. Let ¥" o (M*, F') be the concordance class
of go(M" F). This is well defined according to the above discussion.

If ¥, ¥ € ©,, are homotopy n-spheres corresponding to g : D" ! — Dn~!
and ¢ : D"! — D" then Y"#¥™ corresponds with g.g’. One readily
checks that

(gog) o (M*, F) = (go(M", F))o(g' o« (M", F))
and this implies that
(SHS™) o (MFFY = (8" o (MF, F)) o (2™ o (M*, F))

Let (M* F) and (M'* F') be two framed submanifolds of W"+*~1 which are
disjoint and well apart. Let (M*+M’*, F+F") denote the framed submanifold
which is the union of M and M’. Then it follows from the definition that

2n°<Mk+M/kaF+F/> = (Zn°<Mk7F>) O(En°<M,kaF/>)

Now we prove that if (M*, F') and (M, F’) are framed cobordant in W™ k=1
then

T o<Mk, F) —yn o<M/k, F/>
If (VF1 G) is a framed cobordism between M* and M'* then X" o (VETL G)
gives a concordance between ¥" o (M* F) and X" o (M’ F') as desired.

Let now Wntk=1 be Snth=1 If Mk = Sk C S7+F=1 then we can identify
(S*, F) with an element & € m,(SO(n — 1)), and

Yo (SF FY = 1, 1(2", &)

where 7,5 : O, X m(SO(n — 1)) — O, is the Milnor-Munkres-Novikov
pairing (see [Lashof]).

Finally observe that there is a natural one-to-one correspondence between ele-
ments of 7, _1(S™!) and framed cobordism classes of framed k-submanifolds
of S"TF=1 (see [Stong)). If & € 7,11 1(S™ 1) let (M*, F) be the corresponding
framed submanifold. Let

ﬁn,k—l : 671 X ﬂ—n—l—k’—l(sn_l) - @n+k
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be defined by
Pri_1(X", Q) = X" o (M* F)

Therefore we have that
Tn,k(zna é‘) = ﬁn,kfl(znv J(é‘))

hence
THEOREM 22 : There is a bilinear map

Pk (X" a) = X" o (M*, F)

such that the following diagram commutes
On X Tk (SO(n — 1))

1><Jk

ﬁn,k—l

®n X 7Tn+k—l(Sn_1> @n-I—/c

In the next proposition it is proved that p, _; is related to p, ; by suspension

PROPOSITION 23 : Let S : T, p1(S"!) — m,01(S™) be the suspension ho-
momorphism. Then the following diagram commutes:

n— ﬁn,k—l
@n X 7Tn+k:—1(S 1) - @n+k

1xS
pot

O, X T n(S™)

PROOF: Represent a@ € 7,4 1(S"!) by a framed submanifold (M*, F)
of S™*=1 TLet ¢ be a normal vector field to S™*~! in S"**k Then S(«)
corresponds to the framed manifold (M* F + €) in S"t*~1. We can push
(M* F + ¢) along —e, to obtain a framed cobordant (to (M*, F + ¢€)) mani-
fold (M'* G) C D™ C S"** Let T be a tubular neighborhood of M* in
S™HR=1 and let

F:MFx DV =T
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be a product representation corresponding to F'.

Then using tubular neighborhood theory we can assume that (M’*, G) has a
tubular neighborhood N in S"**, with a product representation

G:M*xD"— N

which has the following properties:
a) N C D" with N0 Svth-1 =T
b) G’M’k X _D_Tfl_il = 1Mk X )\OFO(le X )\_1)
where A : D"~! — D% C S"~! s defined on 1.1. Let ¥" € ©,, and let f :
D"~! — D" ! be a corresponding diffeomorphism. Define f : "1 — Sn~!
by

2o [ XefoXTHz) if e XD

f(@) = { @ if x¢\D"Y)

Then p, —1(X", ) is represented by the diffeomorphism
Fo(MF F) . Sntk-l _, gn+k-l
The homotopy sphere p,, (X", S(a)) is obtained from the disjoint union
(S™F —int (N)) + N

identifying
z € J(S"F —int (N)) = ON

to
Go(lpyp x f) oG 1 (z) € ON

In view of the homomorphisms of 1.1, to prove the Proposition it suffices
to show that p, (3", S(«)) is the same than the homotopy sphere obtained
from D"tk 4 Dfrk identifying

= Sn-i—k—l C aDn-i—k

to
fo(Mk,F>((E) c Sn+k—1 C aDi-&-k

Observe that

D" = (D" — (int (N)UT))UN
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Therefore the last identification above can be made in two steps:
First from S™* —int (N) to (D" — (int (N) U T)) + D}** identifying

z € (D" —int (T)) C (DY — (int (N)UT))
to
S D’f’k

and then identify
x € S"F —int (N) = ON
to
fo{MF FY if 2€T CON
x if ©¢T
But this gives the same than p,, (X", S(a)) Q.E.D.
COROLLARY 24: The following diagram commutes for k—1 < n (see Prop. 4):

O, X T (SO(n — 1))

~
7
1><<]k %

n— ﬁn,kfl
671 X 7rn+k—1(S 1) - @n+k

1xS
P

0, X T (S™) <.

/

px1

CokerJ,, X T, x(S™)

CokerJ,, ;1

REMARK: The condition £k — 1 < n is needed in order to ensure the commu-
tativity of the lower square (see 1.4.)

PROOF: This follows from Proposition 4, Theorem 22 and Proposition 23.
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REMARK: It has been mentioned that m,(PL/0) = O,,. Using this interpre-
tation for ©,, the pairing p,, , corresponds to the composition map

WH(PL/O) X 7rn+k:(5n) - 7Tn+k(PL/O)
defined by
(la], [b]) = [a <b]

and the pairing p,, y—1 corresponds to
([a], [t']) = [a-S(V)]

where S(b') is the suspension of ¥'.

4.2.- INERTIA GROUPS AND pp, 11
Let W"** be a smooth closed manifold. Removing from W"** an open cell
we obtain a smooth manifold W™ with oWk o gntk-1,

Consider now the restriction map
P [ng—&-k: Sn—l] N [Sn—&-kz—l Sn—l]

ie r(g) = g|S"TF L.
THEOREM 25: py, _1(0, x r([WetF, S"=1])) C I (Wn+F)

PROOF: Let a € m,4x1(S™!), and represent o by a framed submanifold
(M*F) of S"**=1 Then a € r([W§+*, S"71]) if and only if there is a framed
submanifold (V"™ G of W™ such that

a‘/OkJrl — ‘/Ok:+1 N Sn+k*1 and G|Mk —F

If " is a homotopy n-sphere, clearly ¥" « (V™ G) gives a diffeomorphism
of W™ to itself which restricted to S"T*~1 is

Yo (MF F) = pi1(X", Q)

Since diffeomorphisms of the disk are PD isotopic to the identity, carrying
the isotopies to the tubular neighborhood of VokJrl in Wg”“k via the framing,
one sees that X" o (M* F) is PD isotopic to the identity. Therefore by Pro-
position 16, p,x_1(3", @) € I.(W™*) whenever o € r([Wg", S"7]) Q.E.D.
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Next we prove that a manifold W"** always exists such that I.(W"*) D
Pre—1(On X r([W5 T, 5771)).
THEOREM 26: For anyn and k > 1 there exists an orientable (n+k)-manifold
Wtk such that

L(W™*) 2 image(pn,x1)

PRroOOF: If X"tk ¢ [C<Wn+k) and Ytk ¢ [c(W’n-Hﬂ)’ then Zn—l—k#z/n-‘rk be-
longs to I.(W" kW) This can be proved as follows.

Let f: Wnthk — Wntkdyintk he a diffeomorphism which is PD concordant
to lyn+x. From Proposition 18 we can assume that there is a concordance H
from f to lym+x and an open set U C W"H* such that H is the identity on
UxICWntkx T,

Similarly, there is a PD concordance H' from
f/ . W/n—i—k N W/n+k#21n+k

to the identity, such that H' =identity on U’ x I where U’ C W'™** is open.

If balls B, B’ are removed from U and U’ and the connected sum W™ F41y//m++
is formed, identifying 0B to dB’, then there is a diffeomorphism

f#f/ . Wn+k;#W/n+k N (Wn+k#2n+k)#(W/n—‘rk#zm-‘rk)

defined by the conditions

FHPIW™E =By =f  f#f|(W"™* - B) = f

and there is a PD concordance H” from f# f’ to the identity defined by the
conditions

Given a € m,,_1(S"!) we will construct a smooth closed connected and
orientable manifold W2 such that if (W?**), = W2*t*. open disk, then
a € r([We*, sm=1))). Granting the existence of W™+* the proof goes as
follows: Consider the set ©,, x {a} C ©,, X T, 4x_1(S""1) and let P, its image
under p,, ,_1, that is,

Pa = ﬁn,k‘—l(@n X {OZ}) - @n+k
By Theorem 25, P, C I.(W"*k). Let then

a1, ...,0p € 7Tn+k_1(Sn_1)
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be such that
Pa1 u---u Poz,- = ﬁn,k—l(@n X 7Tn+k—1(Sn_1))
Then
LWtk Wy > P U---UP,,
Therefore if Wk = WrHk ... LW +k then

Ic(Wn+k) g pn,k—l(@n X 7Tn+k—1(Sn_1))

It remains to construct W+,
Represent « by a framed submanifold (M*, F) of S"™*~1 and let
F:M*xD" ' =T

be a product representation, associated to F', of a tubular neighborhood T
of M¥ in Sntk-1,
Since & > 1 and M* is framed, there is some compact orientable manifold
VL such that OVETT = M*, (vecall that Q" — QF° is zero if k& > 1).
Consider now T C S"tF=1 = 9D"*t* and M* x D" C VO’I€+1 x D™ 1. Form
the disjoint union

Vil 5 prl g prth

and identify
Mk % Dn—l g ‘/'Ok-i—l % Dn—l

to
T C Sn-i—k—l —C Dn+k

via F. After straightening corners along M* x S"2 a smooth manifold with
boundary, X"**, is obtained such that there are natural embeddings

Vk+1 % anl g XnJrk Dn+k g Xn+k
Consider two disjoint copies, X7 X" of X"** and form the double
W(;H—k — D(Xn-i-k)

of X" (Cf. [Munkres 1]). Remove from D(X™*) the open ball int D"** C
X7 C D(X™F) and let (W2+*), be the resulting manifold. Then

6(Wan+k)0 — Sn+l~c—1
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and the framed submanifold (M* F) of S"*%~1 is the framed boundary of
(VF @), where VP C (W2+*), and the framing G is induced from the
standard framing to Vi in VI x D=1 C (W2+k),. Therefore, by Thom-
Pontriagin construction

a € (g™, sm7)

Q.E.D.

REMARK: Suppose that the manifold V"™ is a spin manifold. Then V™ x
D™ ! is also a spin manifold and so is D"**. Then the spin structures of
Vi x D1 and of D™ C X"* are compatible along V™ x D"~ n
D"tk = M* x D" since they are spin structures associated to the framings.
Therefore X™* is a spin manifold ([Minor 5], 1). Similarly, W% = D(X"**)
is spin.

COROLLARY 27: If n + k= —1( mod 4) then

gR(ﬁn,k—l(®n X 7Tn+k_1<5n71)) =0

PRrOOF: This follows from Theorems 14 and 26. Q.E.D.

Consider now the subgroup
r _
™ = 7Tn+k71,n71 g_ ™

consisting of classes which can be represented by an element (M*, F) with
MP* bounding some spin manifold. If M* = S* k > 2, then M* = 0D*! so
that J(m(SO(n —1)) C 7.

Also, by Theorem 3 a) the index of 7’ in 7 is at most equal to 2. In fact,
7" = 7 whenever k = 3,4,5,5,7 or 8 mod 8, and

77w =2

if k=1,2 mod 8.
THEOREM 28: Ifn+ k= —1( mod 4) orn+k =1( mod 8) then

Jr(Prjp-1(0n x 7)) =0

PROOF: Let X" € p,, 1 _1(0,, X m); by Theorem 26 and the remark following
it, there is a spin manifold W™ such that X"** € I.(W"**). By Theorem
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17 in case n + k = —1( mod 4) and by Theorem 21 in case n + k = 1(
mod 8), fr(X") = 0.
COROLLARY 29: Ifn+k=—-1 mod 4 orn+ k=1 mod 8 the map

p O, — CokerJ,

is one to one when restricted to pyx—1(0, x 7).
PROOF: This follows from the fact that the sequences

I .
O, CokerJ,

0 0

bPr+1

are split exact for r = n + k, when n + k is as in the hypothesis, as follows
from the results of [Brumfiel 1,2,3] mentioned in section 1.2 above.
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5.- PROOF OF PROPOSITION 18
Let B, r > 0, denote the n-cube of ‘width’ 27.

n
~—

B! =[-r,r]x - X[-r,r] CR"

T

B7 is a cell complex with 2" vertexes:
Viy...,VUon

where v; has coordinates £1. It follows that B is a cell complex with 2"
vertexes:
Tvl’ o 7TU27L

For each i = 1,...,n there is a pair of (n — 1)-dimensional faces of B}
By = (s € B! | ai= 1}, Bl —{ve B | m—r)

Taking these together they include all the vertexes v; and form a cell complex
that is the boundary, 0B)", of the cube B]'.

If 0 < ' < r consider the annulus
n o __ n : n
Al = B! —int (B)))
Then A" is a cell complex with 2" vertexes
/ /
Tv1,...,TUn, T"V1,...,T Ugn

The boundary of A7, . has two connected components: 9B/, called the inner
boundary, and 0B, called the outer boundary; the vertexes r'vy, ..., 7"'vgn lie
in the inner boundary and the vertexes rvy, . .., rvon lie in the outer boundary.
Let 0 < s’ < s, then there is a vertex map from A}, to Ay | which sends
r'v; to s'v; and rv; to sv;. Triangulate Aj},’r without introducing new vertexes
([Hudson]). The above vertex map transports this triangulation of A7, = into
a triangulation of AY ., and for these triangulations the vertex map extends

linearly over each simplex to give a PL isomorphism

ko = ko(r',r; 8", s) + AL

n
—
o As,7S

Note that if = is in the inner boundary of A,., then ko(x) = (s'/r’)x, and if
x is in the outer boundary of A,/ , then, ko(x) = (s/r)x.
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LEMMA 30: There is a PL isomorphism
k: B} — By

with restrictions satisfying: k| By, =identity; and k|OBY is equal to k(z) =
2.
Define k as follows:

k|BY), = identity
klAY 050 = ko(1/2,3/4;1/2,1)
KA, = ko(3/4,1,1,2)

This is the required map. Q.E.D.
COROLLARY 31: There is a PL isomorphism

ky:BY xI — By x1I

such that ki| By, x I=identity and k|0BY x I is given by ki(z,t) = (2, 1)
ProoF: Take k; = k x 1;
LEMMA 32: There is a PL isomorphism

ky: By x I — 0BT x I x IUB} x I x {1}

such that ko| BY X I is ka(x,t) = (2,t,1) and ko|0BY x I is given by ko(x,t) =
((1/2)z,,0).

PROOF: Let ko| BY' x I; we shall extend this to A}, x I. The cell complex
ATy x I has vertexes

v1 X {0}, ..., van X {0}, 201 X {0}, ..., 2090 x {0}

vy X {1}, ... 09 X {1}, 201 X {1},..., 2090 x {1}

On the other hand B} x I x I is a cell complex with vertexes
v x {j} x{k}, J,k=0 or 1
The vertex correspondence

Uix{j}—>vi><{j}><{1}, QUiX{j}HUiX{j}X{O}
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extends as in page 40 to give a PL isomorphism
Ko ATy x I —0BY x I x1
such that one has

E(z,t) = (x,t,1) = for x € OB}
K (x,t) = (x,t,0) = for z € 0B}

Let k| ATy x I = k'. Then k; is the required map. Q.E.D.

Let now

T = {(s,t)eIxI|t<1-s}
T = {(s,t)eIxI|t>1-s}
E = TnT

PROPOSITION 33: Let H : B X I — B} X I be a PL isomorphism, such that
H|B} x {1} = identity H(B{ x {0}) = By x {0}
then there is a PL isomorphism
H:B!xIxI—B}xIxI
such that H(z,t,0) = (H(z,t),0) and H|B? x T" =identity.
PROOF: Consider a triangulation K of B} x I with vertexes
(p1,t1), - (prytr) pi €B;, t; €I

such that H is simplicial in this triangulation. Make B} x T into a cell
complex as follows: Take as vertexes

(pzutwo) (p2707t1) 1= ]-7"'7T

Take as k-cells of B x T the cells spanned by

(pioatioao)v sy (pik?tikﬂo)’ (pimovtio)a ) (pik707tik>

whenever (p;,,t,), .-, (P, t;,) span a k — 1-simplex of K.

Define now a map on the vertexes:

If H sends (v;,t;) to (v;,t;) let the vertex map send (v;, t;,0) to (v;,t;,0) and
(vi,0,t;) to (v,0,t;) This vertex map extends now to a PL isomorphism

H :BYXT — BxT
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Note that H'|B} x E is the identity. Define now H by the conditions

H|B} xT = H'
H|BY xT = identity

Q.E.D.

PROPOSITION 34: Let H : B} x I — B} x I be as in previous Proposition.
Then there is a PL isomorphism

G:BYxI—B]xI
such that
G|OB} x 1 = H|0B} x I
G| By x {1} U By, x I = identity
PROOF: Let H be as in previous Proposition, and let

ki:B} xI— B} x1I
ky: By x I — 0B} x I x IUB} x I x {1}

be as in Corollary 31 and in Lemma 32. Let also

G=ki'oky' oH okyoky
Since H =identity on

BY x I x {1} UoBy x {1} x I C B} x T"

it follows that G is the identity on

ki oko(BY x T U By x I)
And since H is the identity on

koky(BY x {1} U By x I) = By x I x {1} U0B} x {1} x [ C By x T"
it follows also that G is the identity on
B x {1}UBy)y x I XzXx

Let
H(mat) = (Hl(xvt>7H2($vt)) S B? x I
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then if x € OB} we have

G|OBy} x1 = H|0B} x1
G| By x {1} U B}, x I = identity

Q.E.D.
COROLLARY 35: Let N be a PL n-ball, and

h:NxI—NxI
a PL isomorphism such that
h(N x {0}) = N x {0} h| N x {1} = identity

If f : By xI — NxI is any PL isomorphism such that f : B} x{i} = Nx{i},
1= 1,2 then there is a PL isomorphism

g:NxI—NxI

such that
g|ON xI = h|ON x I

gl f(Bl/Q x I)UN x I = identity

PROOF: Let H = f~1ohof. One checks that the hypothesis of Proposition
34 are verified by H. Let G be obtained from H as in Proposition 34. Then
g=fohof ' : N xI— N xIis the required PL isomorphism. Q.E.D.

Let " € I.(M™) and recall the following notation: ¢ : D™ — M™ is a smooth
embedding used to form M"#3>™ as in page 18, and ¢ : D™ — M™" is also
a smooth embedding, verifying ¢(D™) N¢(D") and yo = ¥(0). f : M™ —
M"™#3™ is an i-diffeomorphism and Hy : M™ x [ — M"#>" x I is a PD
concordance from f to 1.

To prove Proposition 18 the following six steps will be caried over:

Step 1: Modify f and H so that the paths ¢ — (yo,t) and t — H(yo,t) are
homotopic relative endpoints.

Step 2: Modify H further to ensure that f = H|M™ x {1/3} is a PL iso-
morphism and H|M™ x [0,1/3] is a PD concordance from f to f, such that
H =identity near {yo} x [0,1/3].
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Step 3: Make H a PL isomorphism on M™ x [1/3,1].
Step 4: Apply PL isotopy theorems to make H|{yo} x I = identity.

Step 5: Apply regular neighborhood properties so that H(N x I) = N x I,
for some PL ball N, yg € N.

Step 6: Apply Corollary 35 to make H = identity near {yo} x I, and adjust
the parameter ¢ € [0, 1].

The remaining of this section provides the details required for these steps.

LEMMA 36: Let b : [0, 1] — M"#X™ be a closed smooth path, b(0) = b(1) = v,
such that
b([0,1]) Np(D") =0

Then there is a smooth isotopy

Hy: (M"#X") x I — (M"#X") x 1
such that

Hi(xz,1) = (x,1) for all x € M"#X"

and
Hi(x,t) = (z,t)

for all x in some neighborhood of p(D™) and for all t € [0, 1]
Hi(yo, t) = (b(t), 1)

ProoF: Consider b : [0,1] — (M"#X") — ¢(D") as an isotopy of the 0-
dimensional submanifold {yo} C M"#X" and apply the isotopy extension
theorem of Milnor, to obtain an isotopy H; on (M"#X") — (D") which

fixes points outside a compact set. Extend H; via the identity in order to
obtain the isotopy Hion M"#3". Q.E.D.

LEMMA 37: Let X" € I.(M™ then there is an i-diffeomorphism f : M" —
M"#3" and a PD concordance

Hy: M™ x T — (M"#5") x I

such that
t — (yo,t) and t— Hy(yo,t)

are paths which are homotopic relative endpoints.
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PROOF: Hy : M"™ x I — (M"#X") x I be as in page 44. Consider the path
b(t) = Ho(yo, 1 —t), which is not in general smooth but can be approximated
by a smooth path b(t) homotopic to b.

Apply Lemma 36 to b(t), to obtain an isotopy H; such that
Hl(ma 1) = (513', 1)

for all x € M"#X"
Hl(x7t) - (I,t)

for all x in some neighborhood of ¢(D™) and for all ¢, and

Hy(yo,t) = (b(t),t)
for all t. Define now

| Hp(z,2t—1) for 1/2<t<1
Ho(w,t) = { Hi(f(z),2t) for 0<t<1/2

Then hy is a PD concordance and ¢t — Hy(yo,t) is the composition of the
path B
t — Hy(x,t) = (b71(t),1)
with
t— (b(), )

Since b is homotopic to b, it follows that
t — Hs(yo, 1)

is homotopic to
t— (y()? t)
relative endpoints. Q.E.D.

LEMMA 38: With the same hypothesis as in previous Lemma, there is a PD
concordance Hs satisfying besides the properties of Hy the following:
H3(X,0) = (X,0) for all xin some neighborhood of vq.

PROOF: By continuity of Hs and the fact that Hy(yo,0) = (yo,0) there is
some € > 0 such that

Hy(1p(eD"),0) € $(D") x {0}
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Applying Palais-Cerf Lemma, there is a smooth isotopy
G: (M"#X") x I — (M"#X") x I
such that G is the identity outside ¢(D") x I,

G(z,1) = (x,1) for  xe M"#X"
G(Hy(z,0)) = (2,0) for  x € ¢(eD™)

Define Hj as H3(x,t) = G « Hy(x,t) for all  and all ¢. Since G keeps everyt-
hing fixed outside ¥(D") x I it follows that

t — Hs(yo,t) t — H(yo,t)

are homotopic relative endpoints and the other properties of Hs are straight-
forward. Q.E.D

LEMMA 39: Let f : M™ — M"™#>" be an i-diffeomorphism and let o : K —
M™ be a smooth triangulation. Then there is a PL isomorphism (on «)

oM™ — M 45"

and a PD isotopy Hy from f to f such that Hy is the identity on )(D") x I.

Proor: Consider fo.a : K — M"#Y" and o : K — M"#X". These
maps are smooth triangulations. Since f|¢(D™) =identity, it follows that
alofea : K — K is the identity on a~'4(D"), in particular a™' . f .
is PL on a~'¢(D"™). According to [Munkres 1] there is, for any § > 0 a

d-approximation to «
B i— M"#3"

which is a smooth triangulation satisfying
Bla~ (D) = ala™ (D)
and 87 'ofoa: K — K is a PL isomorphism. Define
f=aof of: M™ — M"#X"

Since B
o fa=p""fa

f is certainly a P L-isomorphism.
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Consider now the smooth maps
foa: K — M"#X"

and

foa: K — M"#X"

then B
feala™ (D) = foala™  ((D"))

Let & > 0. If § in the paragraph above is small enough, then f is a 0'-
approximation to f. Applying now [Munkres 1] 10.9, provable in a relative
form using [Munkres 1] 5.15, there is a smooth isotopy

F:KxI— (M"#5")x I
satisfying

F(z,0) = (f(x),0)
F(zx,1) = (foa(x,1)

Define H, by

then

and _
Hy(y, 1) = Jf;(ofl(y), 1)

and for y € ¢¥(D")

Q.E.D.

LEMMA 40: Let X" € I.(M™). Then there is an i-diffeomorphism f : M™ —
M"#¥™ and a concordance Hs from f to the identity satisfying

Hs|M™ x [1/3,1] is a PL isomorphism
H;|¥() x [0,1/3] = identity
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and the paths
t — (yo,1) 1/3<t<1
t — Hs(yo,t) 1/3<t<1

considered as paths in (M"#X"™) x [1/3,1] are homotopic relative endpoints.

PRrROOF: Let Hj3 be the concordance from an i-diffeomorphism f to the iden-
tity constructed in Lemma 38 and let H, be the concordance constructed for
f in Lemma 39. Define Hj by

Hy(z, 3t) if 0<t<1/3
Hs(z,t) =< Hy(z,2-3t) if 1/3<t<2/3
Hy(z,3t—2) if 2/3<t<1

one checks directly that Hs has the required properties. Q.E.D.

LEMMA 41: Let X" € 1.(M™). Then there is an i-diffeomorphism f : M™ —
M"#3™ and a concordance Hg from f to the identity such that Hg(yo,t) =
(yo, t) for all't and Hg is PL in a neighborhood of {yo} x I.

PROOF: Let Hj be as in Lemma 46, then consider Hs|M™ x 1/3, 1] which is a
PD isomorphism. It follows from section 3.1 that there is a PL isomorphism

G1: M" x[1/3,1] = M"#X" x [1/3,1]
which is a d-approximation to Hs and such that
G1|M™ x [1/3,1] = H;
Let Hs: M™ x [0,1] — M™ x [0, 1] be defined as

Hs|M™ % [0,1/3] = Hs
H;|M™ x [1/3,1] = G

If 0 is small, the PL paths
t — Hs(yo,1) t — Hs(yo,t)
are homotopic in M"#%"™ x [1/3,1] relative endpoints. Therefore,
t — Hs(yo,t)  t— (yo,1)

are PL-homotopic in M"#%" x [1/3, 1] relative endpoints. Since dim M™ > 3
these paths are PL isotopic relative endpoints ([Hudson|). Therefore by the
P L-isotopy extension theorem there is a PL isotopy

Hy o (M"#57) x [1/3,1] — (M"#5") x [1/3,1]
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such that H; =identity on
(M"#35™)x{1/3, 1} x [0, 1JU(M"#X™)x[1/3, 1] x{1}Uy(D"™)x[1/3,1] %[0, 1]

and )
Hz(yo,t,0) = (H5(yo,t),0), 1/3<t<1

Define (H7)1 by ((H'])l(.]},t),()) = H7(]37t, 0) Let

[ Hs(x,1) if 0<t<1/3
Ho(w,t) = { (Hp)'Hs(z,t) if 1/3<t<1

Then Hg is a PD concordance from f to 1 which is the identity {yo} x I.
Since Hg is PL on M"#X™ x [1/3,1] and Hg =identity on ¢ (D™) x [1/3,1]
the Lemma follows. Q.E.D.

LEMMA 42: Let ¥" € I.(M™), then there is a concordance Hg : M™ x I —
(M"#3™) x I from an i-diffeomorphism f to the identity and a PL ball
N C p(D"™) with yo € int (N), such that Hs(N x I) = N x I and Hs|{yo} x
0, 1] =identity.

PROOF: Let Hg be as in previous Lemma. By continuity of Hg there is some
PL ball N with yo € int (N) C ¢(D™) such that

Hs(N x [0,1]) C int (¢(D") x [0,1])

Since Hg is PL on ¢(D") x [0, 1] we have that Hg(IN x [1/3,1]) is a regular
neighborhood of {yo} x [1/3,1] which meets (M"#X") x [1/3,1] along N x
[1/3,1] and N x {1}. By uniqueness of regular neighborhoods, ([Hudson],
page ) we can modify Hg|N x [1/3,1] via a PL isotopy to obtain a new PL
isotopy relative 9(M™ x [1/3,1]), in order to obtain a new PL isomorphism

Hg: M" x [1/3,1] = (M"#X") x [1/3,1]

such that B
Hylo(M" x [1/3,1)) = Hy
Hg|N x [1/3,1] = N x[1/3,1]
ﬁ6\{y0} x [1/3,1] = identity

Define Hg : M™ x [ — (M"#X") x I by

Hg|M™ x [0,1/3] = Hg
H8|Mn><[]_/3,]_] = Hﬁ
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Then Hg(N x [0,1]) = N x [0, 1] and Hg| = {yo} x [0, 1] =identity. Making an
appropriate change of parameter ¢, it can be assured that Hg|M™ x [0,1/3] =
[ x 11 and Hg|M™ x [2/3, 1]=identity.

PROOF OF PROPOSITION 18: Let Hg be as in Lemma 42. Then h = Hg|N x
0, 1] satisfies the hypothesis of Corollary 35. Let g be the PL isomorphism
constructed from h in Corollary 35, and let U C N be a neighborhood of y
such that g|U x I =identity.

Define H as
H|N x [0,1] =g
H|(M™— N)x[0,1] = Hg

Then H|U %[0, 1]JUM"x[2/3, 1] =identity and H|M™x{0} is an i-diffeomorphism.
Q.E.D.
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6. LOW DIMENSIONAL CASES
6.1.- Using the exact sequence

0—I.(M")—©, —[M",PL/O|

and a Postnikov tower for PL/0 it can be proved that [.(M"™) =0 forn =7
and for n = 8.

6.2.- In dimension n = 9, Og has 8 elements. Applying Theorem 21, it follows
that for any spin manifold M?, I.(M?) does not contain the Kervaire sphere
.

In case M? is not spin we do not know the answer. Also, since pg; # 0 ([Bre-
don]), pso # 0 and Theorem 26 implies that there is a manifold W? with
1.(W?) 2 pso # 0.

6.3.- In dimension n = 11, since bP;; = ©17 = Zg1p Theorem 17 implies that
for any spin manifold M, I.(M'!) = 0. In case M'! is not spin, again Theo-
rem 17 implies that I.(M'") has at most t;;/t}; = 32 elements; we do not
know if an M exists such that I.(M*) # 0. Also, since Coker.J;; = 0 Theo-
rem 28 implies that p,, ;1 = 0 whenever n+k = 1land 7, 1, 1 = Tnikn-1
(see section 4.2).

6.4.- In dimension n = 15, CokerJj5 = Zs, which implies by Theorem 17 that
for any spin manifold M, I.(M'®) has at most 2 elements, and the Milnor
sphere is not in I.(M").

In case M is not spin, since gr(X}°) = 1 # 0, Theorem 17 implies that
I.(M") does not contain X}°, and in fact, I.(M') has at most t;5/t;5 = 128
elements. Again, we do not know if I.(M'®) can actually be that large.

Since pra1 # 0 ([Bredon]), p1ao # 0, and there is a manifold W' with
I (W) D = Dy #0.

6.5.- For n = 17, ©7 has 16 elements and CokerJ;7 has 8 elements. Therefore,
Theorem 21 implies that I.(M'7) has at most 2 elements if M'7 is spin. Since
p161 # 0 (ibid), pigo # 0 and Theorem 25 implies that there is a manifold
W with I.(W?' Dimagepig # 0.

The data used about ©,, bP,,; and CokerJ, are taken from [Kervaire-
Milnor].



