Generalized Backpropagation
(Beta version 1.0)

Daniel Crespin
Facultad de Ciencias
Universidad Central de Venezuela

A Roberto Pérez Cabrera
por su admirable constructividad

Abstract

Global backpropagation formulas for differentiable neural networks
are considered from the viewpoint of minimization of the quadratic
error using the gradient method. The gradient of (the quadratic error
function of) a processing unit is expressed in terms of the output
error and the transposed derivative of the unit with respect to the
weight. The gradient of the layer is the product of the gradients of
the processing units. The gradient of the network equals the product
of the gradients of the layers. Backpropagation provides the desired
outputs or targets for the layers. Standard formulas for semilinear
networks are deduced as a special case.

1.- Introduction. Let W be an open set in RM and Q : W — R a dif-
ferentiable map. To obtain sequences w(®, w®) ... w® . with Q(w®) >
Q(wM) > .- > Q(w®) .- - the following two algorithms are often used.
Gradient algorithm: w*+1) = w®) — eV Q(w®)).

Steepest descent algorithm: w®*+) =point on the line w® + tVQ(w®),
t € R, where () attains its minimum.

Numerous technical details are involved in the correct and effective applica-
tion of these iterations but the calculation of the gradient is a basic step.

Problems solved with neural networks usually involve a set of inputs, a cor-
responding set of desired outputs or targets and a real valued error function
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Q(w) that measures, for a parameter w € RM, how much the network misses
the targets. The above algorithms are first choice procedures to obtain, start-
ing with certain w(®), better parameter values w(®). See [10] for a treatment
of the gradient method that leads to backpropagation in semilinear networks.
On the other hand the steepest descent algorithm does not seem to have been
much used for neural networks but could be useful.

In the present paper the calculation of V@ is carried out for general dif-
ferentiable neural networks within the framework given in [1]. Quadratic
error functions are used but the same procedure may be easily adapted to
non-quadratic error functions, the ones associated with Minkowski metric

(> rf)% say, and the results could be of interest in non-linear regression.

The formulas obtained are global: Inputs and processing units of each layer
are subject not to individual treatment but to typical explicit vector ex-
pressions that include all simultaneous components. This gives results in
principle suited for vectorial processing. Gradients of (the quadratic error
function of ) processing units are expressed in terms of the output error and
the transposed derivative of the unit with respect to w; gradients of layers
are products of gradients of processing units; and the gradient of the net-
work equals the product of the gradients of the layers. Backpropagation
provides the desired outputs or targets for the layers preceding the last one.
In particular, the explicit global formulas for semilinear networks are ob-
tained. According to [5] perceptron neural networks that perform a given
pattern recognition task can be constructed directly from the data provided;
training is not needed. But in practical applications training, and backprop-
agation in particular, could still be useful to fine tune the weights. Hence,
despite the direct methods, this paper may also be of practical interest.

2.- Terminology and notation. As a reference for elementary calculus
consult [7] or [8]. Properties of transposes of linear maps can be found in
[9]. For the neural network formalism adopted here see [1]. The following
notation will be used. If & = (21,...,2,), ' = (2],...,2),) are in R™ then
(x,2") =", x;xt. Any linear map L : R™ — R has the form L(z) = (a, z)
for a uniquely determined @ € R™. The transpose of the linear map L :

R™ — R"is L* : R® — R™ defined by the condition (L(z),y) = (z, L*(y)).
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In particular if L : R™ — R is given by L(z) = (a,z) then L* : R — R™
is given by L*(y) = ya; also, L*(1) = a. Matrices of linear maps will always
be taken with respect to the canonical bases of euclidean spaces. If L has a

n x m matrix (mj;) with n rows and m columns then the matrix of L* is the
transposed m x n matrix (m;;)* = (ml*]) with m}; = mj;.

Let U C R™ be open and let f : U — R”" be differentiable at z € U;
the derivative of f at z is a linear map Df(z) : R” — R"™ whose value
at dv € R™ will be denoted Df(z) - dx. Let f = (f1,...,fn) with f; :
U — R. The matrix of Df(z) is the jacobian of f at z, Jf(z) = (g—ﬁ(i‘)),
and the transposed derivative D* f(z) : R* — R™ has matrix the transposed
jacobian J*f(z) = (%(f))* The gradient of f at z is by definition the vector
Vi(z) = (%(57), ce %(i)); if the derivative of f at Z can be expressed as

Df(z) - dzx = (a,dz) for some a € RM then necessarily a = Vf(z). Except
if otherwise indicated all maps will be assumed differentiable.

Let V be open in RM x R™, (dw,dz) € RM x R™ = RM*™ and f: V — R"
differentiable. The partial derivatives of f at (w,z) € V with respect to w €
RM and x € R™ are the linear maps D, f(w,z) : RM — R" and D, f(w, ) :
R™ — R" defined by the expression Df(w,z) - (dw,dz) = (Dyf(w,) -
dw,D,f(w,z) - de). Their matrices are the n x M matrix J, f(w,z) =
(8—1;;('&), z)) and the n xm matrix J, f(w, z) = (g—z('w, z)); these are composed
from the first M and last m columns of J f(w, ).

3.- Errors. Assume W is open in R™ and that f : W x R™ — R" is a
differentiable parametric map; see [1]. Recall that f,(z) = f(w,z). Figure 1
illustrates f and its partials.

(a) W (b) W

:.C fw f(w,:c)

- > .

R™ R"

Figure 1: (a) Parametric map f(w,z); (b) partial derivatives.
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For fixed x € R™ as input and y € R™ as desired output or target, the output
erroris ¢ : W — R" given by §(w) = f(w,z) — y, and the quadratic error
is the function @ : W — R defined by Q(w) = (f(w,z) — y, f(w,z) —y) =
(6(w),d(w)). The derivative of @ at w is the linear form in R™ given by

(a) W (b) W o)

2\Dgf<w,:c>

R™ R”

Figure 2: (a) Transposed partial derivatives of f; (b) gradient of Q

DQ(w) - dw = 2(Dy f(w,z) - dw, f(w,z) — y). Taking the transpose of the
partial derivative of f this gives DQ(w)-dw = (2D}, f(w, z)-[f(w, z)—y], dw),
hence

VQ(w) = 2D}, f(w, ) - 6 (1)

where § = §(w). This formula is basic and the rest of the paper concerns its
application to calculate the gradients of quadratic errors.

4.- Real valued parametric maps. Assume n = 1, that is, let W be open
in RM and f: W x R™ — R a differentiable map. The error ¢ is now a real
number and according to equation 1 above the gradient can be written as

VQ(w) = 26D f(w,z) - 1 (2)

w

5.- Real valued paired maps. In case W = R™ with f : R x R — R
a paired map (see [1]) one has by definition f(wy,..., Wn,21,...,&n) =
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A(E1(wi, 1),y (W, Tm)) so that 24 % — () except for i’ = i. Will calculate

VQ(w) in terms of partial derivatives. Let & =&(wy,z;)and € = (&,...,Em)
then

0 s 0 - 0&

and therefore for dw = (dwy, - - -, dw,,)

" 9 e,
P 6&(51 5 )awl(u 'rl)dwl

Dy, f(w,z) - dw =

thus, with § = f(w, z) — y, equation 1 implies
9¢ - 96

VQ( ) (651(5 )awl(wla‘rl) )
09 - m _
Note also the formulas
of 9¢ - 9¢;
arl( ”L‘) afl(fh fm)a z(wl7$)
"0 0
Da,f(w,:r:)-d'w—za?(fl,...,fm) & (w;, z;)dz;
=1 2 l
* - N T aQb agl
D f(w,z)-0= 5(851(5 b )axl(ul,xl) ,
a¢ c afm _ _
6.- Semilinear maps. Assume now that f : R™*! x R™ — R is semilinear,
that is, f(wo, w1, ..., W, T1y ..oy Tm) = Y(wWo+ w21+ -+ + W ay,). For x =
(1, ., xm)let (a,2) = (a,21,...,2,) and let w = (wo, wy, ..., wy,) so that,

for example, (w, (o, 2)) = woar + wyxy + -+ - + Wy = ((, 2),w). Then the
semilinear map can be written as f(w,z) = ¥((w,(1,2))). Either by direct
application of the chain rule or from the formulas of the previous section
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(with minor modifications due to the bias wy), for dw = (dwy, dwy, . .., dw,,)
the following results

D, f(w,z) - dw =v¢'((w,(1,7))) (dwo + T1dwy + + -+ + Typdw,y,)

D:f(w,z) -8 =" ({w,(1,2))) 6 (1,Z1,...,Zm)
implying

VQ(f)(w) = 2¢'((w, (1,2))) 6 (1, 21, ..., Tm) (5)
where 1’ denotes the derivative of ¥). Note also that

D, f(w,z) de =9¢'((w,(1,7))) (wrdzy + -+ - + Wppdzy,)

_:f(LT), f) E ¢/(<’LTJ, (17 f)>) 5 ('wla s waL) (6)

!

7.- Vector valued parametric maps. Consider now f: W x R™ — R"
so that f = (f1,...,fn) with f; : W x R™ — R, and let y = (y1,...,Un),
0= (01,...,0n) = f(w,2) —y = (fi(w,2) — y1,..., fu(w,T) — yn). In this
case Dy, f(w,z) - dw = (Dy fi(w,z) - dw, ..., Dy fn(w,z) - dw) and therefore
D: f(w,z) -8 = DX fi(w,z) 614 -+ DX fa(w, ) -5,. On the other hand the
quadratic errors of the component functions f; with targets y; are Q(f;)(w) =
2D} fi(w,z) - §;. Formula 1 applies and gives

VQ(w) = VQ(fi)(w) + -+ VQ(fu)(w) (7)

In words, the gradient of the quadratic error of a vector valued parametric
map equals the sum of the gradients of corresponding quadratic errors of the
components. For the partial with respect to x and its transpose the formulas
are

D, f(w,z)-de = (Dyfi(w,z) - dx,..., D, fn(w,z) - do)

D;f(ﬁ),f) ' 5 = D::fl(wri) ' 51 +o0t D:fQ(J)rf) ' 5<1

—~
oo
~—

8.- Products. The integers m, My,..., M, ny,...,n, are positive, M =
Mi+---+M,, n=n1+---+n, Let W, be open in RMi, W=W;x---xW, C
RMi x ... x RM: = RM. Consider differentiable maps f; : W; x R™ — R™
and their parametric product f = fix---xf, : W x R™ — R" defined
by the formula f(wy,...,wy, ) = (fi(wi,z),..., f(wg, x)). For given input
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z € R™, and target y = (y1,...,Yy) € R" let d(w) = (d1(w), ..., (w)) =
F(10,2) = § = (filws, ) = G1,- . fo(t04,7) — ). The quadratic error of f
satisfies Q(f)(w) = X1 (fi(wj, ¥) — yj, fi(w;, ) — y;) = (]1‘;1 Q(f;)(w;).
Taking a fixed w = (wy,...,w,) € W and letting § = (5y,...,68,) = §(w) =
(fr(w1,2) = y1,..., fylw,, ) y,) derivatives can be taken componentwise
and it is obvious that

Dy f(w,z) - dw = (Dy, fi(w1, ) - dwy, ..., Dy, fo(thg, T) - dwy)

Therefore DY f(w, x = (D fi(wy, @) - 51, .. w 2 fa(wy, ) - 84), s0
VQ(w) = (2D}, fi(w ) . .,Zqufq(wq, ; ) ) and this is the same as

VQ(f)(w) = (VQ(fi)(w), ..., VQ(fe)(wg)) (9)

Thus, for a parametric product the quadratic error has gradient equal to the

\_/

E |

product of the gradients of the quadratic errors of the factors. Similarly,

D, f(w,z) -de = (Dyfi(wy,z) - dx,..., Dyfy(wg, T) - dz) from where

Dy f(w,z) -8 = Dy fi(wr,2) - & + - + Dy fyli0g, 7) - & (10)

9.- Semilinear products. An additional subindex has to be added to the no-
tation of section 6. In the case of products of semilinear real valued paramet-
ric factors fj(wjo, wjt, ...y, Wim, 1, ooy Tm) = Yj(Wjo+wjiz1 4+ + WijmTm)
assume for simplicity that a unique threshold function v =v¢;, y =1,...,4q,
is involved. Let w; = (wjo,wj1,..., Wjm), w = (W, Ww1,..., W), dw; =
(dwjo, dwjr, . ..,dwjy,) and dw = (dwy,...,dw,). The parametric product of
q
semilinear functions is then f = fix--- xf, : R™™1x ... xR™! x R™ =
Re("t1) x R™ — R¢

flw,z) = flw,...,wg )
= ( 1(w17 )7"-afq(th7$))
(Y((w1, (1,2))), ..., ((wy, (1, 2))))

For notational convenience let 5; = (w;,(1,%)) = wjo+ WjZ1 4+ + WjmTrm.
From formulas 2 and 5 the quadratic error Q(f) has gradient

VQ(]C)(J]) :2('¢/(§1)51 (17517"'7‘m)7 7¢( ) (1 xh"'ffm)) (11)
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If matrix notation is preferred define the term by term product of n x m
matrices (aj;) and (bj;) as the n x m matrix (aj;)#(bj;) = (ajib;;). 1t is then
possible to write

1//(51) ¢’(§1) 1 &y -+ Ty 8 -+ 0y
@[)’(‘gq) @[)’(‘gq) 1 j.l jjm 5q 5q

All matrices in this term by term product are ¢ x (m 4 1) matrices. For the
partial with respect to = equations 6 and 10 give

Darf(Ujv ‘f) rdr = ('¢/(§1) <'LD17 (07 d$)>, SR 7¢,(EQ) <'LDQ7 (07 dt)>)
and for the transpose

D f(w,z) -6 = (((¥'(51)W11, ..., 0" (51)W0q1), ), . .., (V' (5g) D1y - - -

An equivalent matricial expression for 13 is

ol
il

i Wy - wa .¢’(§1) 0
Dy f(w,z)-6=1 : : : : Pl (14)

Wi - Wgm 0 1/),(511)

Sl
i)

here the second matrix is ¢ X ¢ diagonal.

10.- Compositions. Consider open sets W* C RMx, k= 1,...,p, W =
W1 x .-« x WP, and differentiable parametric maps f* : Wk x R™ — R™+
with parametric composition f = fPo...5fl . W xR™ — R+, Recall that
for a given first input x = ' = (x},...,z} ) € R™ this is recursively defined

g
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by the expression f(w',... wP,z) = fP(wP, fP71o...5fl(w!, ... wP™! z));
see [1] and Figure 3 below.

W W Wt W

DR

A

Rr+1
Figure 3: Neural network fPs...sf!

Let M =M+ + M, w=(0",...,wP) e W, dw = (dw1 .,duwP) € RM
take z = z! = (i%,...,iﬁ}ll) € R™ and define, for k = 1,---,p, zF =
fE(w*, z%). The point z* is the k-th input in R™; see Flgure 4. The chain
rule implies the following formulas for the derivative of the parametric com-

position with respect to the parameter.

Wt W

@ @ Ny

R7»+1

R™

Figure 4: Partial derivative D, (fP%---5f")(w,z') - dw
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D, f(w,z') - dw =
D op fP (0P, TP )o Dypr fP~1 (wP™1, 2P~ )0 - - -0 Do f2 (w2, T%)o
1

+szfp ('LDp7 :Ep)ODxp—l fp—l (.lz,p—l’ :Ep—l)o e O-D.Z'?’ f3 (LDS :53 o

+ Do fP (WP, ZP)o Dot fP71 (WPt 7P~ Yo D 2 fP72 (WP, 2P~ 2) - dwP™?
+ Do fP (WP, ZP)o D yyp—r fP71 (wP™t, zP71) - dwP™t
+prfp (‘LDP, fp) . dwp

In more compact notation let L,; = D, f’(w?,z’) and L, = D, f?(w?,z%);
the transposes L%, = Dz; f/(w’,z7) and L3; = D2, f7(w?,z7) will be used
later. Then

Dwf('LD, :El) - dw LypoLlp-10---ol 20l - dw*
prosz_lo e ong, OLw2 . dw?

prOsz—l Opr—2 . d'lﬂp_z
propr—l . d'wp_l
pr . d'wp

+ 4+ + + 4

Wwe

R™ R+

Figure 5: Transposes of partial derivatives
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The gradient of the quadratic error @ = Q(f) has p components: VQ(w) =
(VIQ(w),...,VPQ(w)) € RM; these can be calculated taking transposes
in the previous formulas. For this, let y = yP*' € R"»+ be a desired final
output or final target and define the final error as é6(w) = f(w,z) —y =
Pt — gPtt The quadratic error @ = Q(f)(w) = (§(w),d(w)) is then a
function of w and if § = 6**! = §(w) = f(w,z) — v,

viQ)  VIQ(m) V) YWQ(w)

L*p 5}?-}—1
z 7

R™ R™ R+

Figure 6: Gradient of quadratic error: VQ(fP5---5f1)(w).

V®IQ(w) = 2D%, fP (wP, ;f;p) . P!
PQ(w) = 2D, 171 (w20 V) D, fP (WP, a7) - 5]

p—2)Q( ) Dz, , fP 2( rp 2) D;p_lfp_l(.wp_l’jp_l)o
Dz, fP (wP, zP) - optl1

AVA|
AVA|

VEIQ(w) = 2D f2(0,7%)o Dz f (P, 2)e <o Dy f (w8~ 7)o
Dz, fP (,wp jp).(gp-l—l
V(I)Q(LD): D*1f1( )D* f2( 2 72) . xp 1fp 1( -p—1 rp 1)

Dz, fP (wp7 Ip) Spt1
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Or, with compact notation,

veIQ(w) = 2L%, - §p+1
vVeE-DQ(w) = 2L, 1oL, - 6P
V(Q)Q(w) = 2L%,0L%0 -+ oL%, - fyas!

v(l)Q(@) = 20X, L0 L%, oL’ fyas!

Call (p+1)-th error to the already defined final error: P*' = § = f(w,z) —
y € R+ and define the k-th erroras 6% = D, fE(wk, zk). 0kt = L;k-gkﬂ €
R™, k=p,p—1,...,2,1. One says that 6k is obtained backpropagating the
error 6! by means of D%, f*(w*,z*). Define also the desired k-th output
g+t € R™+1 as y*t! = gkt 4 §%+1 The previous expressions for the com-
ponents of the gradient can now be reformulated saying that the components

of VQ(w) are the liftings to RM* via D, f* (w*, z*) = L7, of the backprop-
agated errors

V®Q(w) =  2L%, -6
VeDQw) = 2L%, ., P
: (15)
vVAQw) = 2L, -8
vQ(w) = 2L, -4

For the maps f* = f*(w* %) : Wk x R™ — R™+ take zF = zF=kth
inpute R™, y**! = y*+1=fk+1th desired outputé R™+ and consider the
quadratic error Q(f*)(w*) = (f* (w*, %) — y**+1, f* (w*, z¥) — y**1). This has
aradient VQ(f*) () = 2D f* (wh, 2%)- [F* (w¥, £4) — 1] = 2 L1, -g+1 =
V& Q(w), thus

V(@)(w) = (V(Q(f ) (@), ..., V(Q(f7))(w")) (16)

This says that for a neural network the quadratic error has gradient whose
components are equal to the gradients of the quadratic error of the layers,
calculated for the appropiated inputs and targets.

11.- Backpropagation in neural networks. Let f*: W* x R™ — R™+1,
k=1,...,p, be differentiable, W = W1 x ... x WP, and consider the neu-
ral network f = fPo...5fl : W x R™ — R™+'. Let the point z! € R™
be an input, y?t' € R™+! a desired output and let Q(w) be the quadratic
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error. To minimize ) the gradient algorithm can be used; see section 1. The
components V¥(f)(w) of V(f)(w) can be calculated in terms of the gradi-
ents V(f*)(w") of the quadratic error functions Q(f*)(w*) backpropagating
errors; see previous section. If the layers f* are parametric products then
the gradients V(f*)(w*) can be expressed in terms of the gradients of the
quadratic errors of the factors (processing units); see section 7.

In general the network has to be trained for several data: a finite set X CR™
of inputs and targets Y C R"r+!. For each input z let its corresponding target

be y = g(z), and define Q*(f)(w) = (f(w,z)—g(z), f(w,2)—g()). The task
is now to minimize the total quadratic error QX (f)(w) = Ysex Q%(f)(w).

But since VQX(f)(w) = Yzex VQ?(f)(w) the calculation of VQ*(f)(w)
reduces to the single input case.

If the network fPs-..5f1 is semilinear then w = (w!, ..., wP), w* = ('wkarljk)
€ R™+1 X" and the layer fF : R™+1 X7 x R™+l o R™+1 is a parametric
product of njy; semilinear real valued units, that is, f* = fFx... >A<f1’jk+1

. k ok 2k 2k k kY — - ok k...

W:Eh jk% (wijO, W] 1o Wi s oo :cnk) = Ib(ijlo—l-wijrll;vl—l- +

; : : : =1 (=1 =1 ni +p+1

U“’ijnkxnk)' For a given single input z* = (xlj . "TnkE ElR , Earget yPTt €

R+ and parameter w = (w!,....wP) let 6P*t = (§PT ... §P*1) be the
p ? ? 1 Y Y Npt41

final error. Formula 14 gives the partial with respect to = of a semilinear
product and it follows that the backpropagated errors are

<k ok .. gk 1(gky .. Sk+1
51 Wiy Wypyr 1 (0 (51) 0 oy
ok = = :
k —k ok =k ki1
5nk Win, wnk+1nk 0 d) (Snk+1) 5nk+1
_ 5 _ & _ -k —k\\
where k = p,p —1,...2, jep1 = 1,... gy and s, = <wjk+1,(1,:c ) =
Tk ok k... a5k k i i i
wijO—l— wh 1% 44 W5 g Ly Formula 15 implies that the gradient has

components VQ(f*)(w"*) and Formula 12 gives the partial with respect to w
of a semilinear product implying that for semilinear networks the components
of the gradient of the quadratic error are

GEH e W Y (L ety

20 S I L #

=k ok —k +k 7k' 1 7k. 1
¢,(Snk+1) e ¢,(Snk+1) 1 xl e Ink 5n:—+1 e 51’1;:_1
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where each of the three matrices in the term by term products has ngy1 rows
and nyg 4+ 1 columns. In the case of several input-output pairs the gradients
are added up as previously explained.

In practical applications the function ¢ most often used is the sigmoid ¥ (t) =

(1 4+ e7*)~* which has derivative ¢'(t) = e7*(1 + e7*)~2
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