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Abstract

It is proved that any perceptron neural network is a product of char-
acteristic maps of polyhedra.

1.- Introduction. It is known that a product of characteristic maps of
linear polyhedra can be realized as a three layer perceptron, see [7]. A more
detailed version can be found in [4]. The present paper proves that linear
perceptrons are always products of characteristic maps of polyhedra. This
gives the geometric structure of perceptrons. The proof is elementary and
applies to more general perceptron networks as explained below.

In many applications perceptron neural networks are constructed along the
following lines. Based on the specific problem at hand an educated guess
is made as to the number of layers, and of cells in each layer, necessary for
the perceptron network to perform the desired task. The discontinuous acti-
vation function typical of perceptrons, known as Heaviside function, is then
replaced by a smooth sigmoid. The reason for this replacement is that since
the Heaviside function has zero derivative except at the origin (where it is
discontinuous) it is a ‘gradient blind’ function; when approximated by the
gradient sensitive sigmoid various gradient optimization procedures, called
backpropagation, can be used. Initial weights are then chosen for the various
connections. Because the choice is usually made at random, it is often the
case that this initial network does not even approximates the performance
originally required. Training is then applied. This normally consists in the
iterative modification of the network weights, based on data (examples and
counterexamples) and aiming at the minimization of a function that gives a
measure of how badly a given set of weights performs the task. At the end of
the training the smooth sigmoid is replaced back by the Heaviside function.
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Many variants of the outlined procedure exist. When training is successful
the resulting perceptron network performs, at least approximatedly, as orig-
inally demanded. But often the training results inadequate as revealed in
poor network performance.

However, once it is established that perceptrons are characteristic maps of
polyhedra, an alternative approach is to build directly a polyhedron out of
the examples and counterexamples in such a way that it accurately performs
the desired task, at least on the data initially provided. This polyhedron can
then be realized as a perceptron network and its performance on fresh data
can be evaluated. An algorithm to specify these networks has been proposed

in [5].

Perceptron units are characteristic maps of linear half spaces in R™ and
polyhedra appear as members of the algebra of sets (a collection closed under
intersections an complements) generated by the half spaces. The role of the
first layer of a linear perceptron network is to provide a parametrized family
of half spaces. The second layer specifies a collection of intersections of half-
spaces. These intersections are convex cells. Each output arrow from the
third layer selects a collection of convex cells from the second layer. Further
layers have the effect of modifying the previous selection of convex cells. The
final result is that individual output arrows from the last layer equal the
characteristic map of a union of convex cells (defined by the second layer)
this union being, by definition, a polyhedron.

The half-spaces defined by the first layer generate an algebra P of subsets
(collection closed under intersections and complements) of euclidean space.
All members of P are polyhedra, in particular the polyhedra determined
by the perceptron network. More generally, if Heaviside functions are kept
and linear forms f are replaced by quadratic, polynomial, periodic or other
kinds of functions g, then the first layer defines generalized half spaces by
the condition hog = 1. An algebra of subsets of euclidean space is generated
by these half spaces (subsets that can be called quadratic, polynomial, peri-
odic or generalized polyhedra), and the arguments below prove also that the
corresponding generalized perceptron networks are products of characteristic
maps of generalized polyhedra. For notation and basic concepts see [2]-[4].
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2.- Proof of the Structure Theorem. Let X be a set, A C X, and let
AN = A AO = X — A If X4 : X — {0,1} is the characteristic map of A, it
has inverse images X~!(b;) = A®) b; € {0,1} a bit. And any map f: X —
{0, 1} is the characteristic map of a subset, namely, f = X4 with A = f~!(1).
For n subsets Aj,..., A, of X the characteristic indicator is the product of
the characteristic maps X = Xy4,..4, = Xa, X -+- X Xg, : X — {0,1}",
and the former are the sets indicated by X. Furthermore, any map f =
(fiy.o s fu) + X — {0,1}" is an indicator, namely, the indicator of the sets
Ay = Y1), ..., A, = f71(1). Consider for binary vectors b = (by,---,b,) €
{0,1}" the intersection A®) = AP Al Then x71(b) = A® and
for subsets B C {0,1}*, Xx7'(b) = U{A®|b € B}. Tt follows that for any
g=1(91,--.,9,) : {0,1}"* — {0, 1}? the composition f = goX : X — {0, 1} is
the indicator of the sets P, = X™!(By),..., P, = X"'(B,) where B; = gj_l(l),
7 =1,....p and each of the sets indicated by goX are finite unions of finite
intersections of the A;’s. The structure theorem follows because, on one
hand, perceptron layers are characteristic indicators, on the other hand, the
first layer is a product of characteristic maps, and finally, the composition
of the remaining layers can be replaced by its restriction to {0,1}", say, by
g=1(g1,---,9p) : {0,1}" — {0,1}” resulting in a function identical to the
one defined by the network.
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