PATTERN RECOGNITION WITH UNTRAINED
PERCEPTRONS

(Beta version)

Daniel Crespin
Facultad de Ciencias
Universidad Central de Venezuela

Abstract

It is shown that pattern recognition problems can be solved by con-
structing a polyhedron P. Algorithms for effective construction of
P in terms of the problem data are given. In a previous paper it
was explained how to build a linear perceptron network equal to the
characteristic function of any polyhedron. The perceptron network
corresponding to P solves the pattern recognition problem. No net-
work training is necessary.

1.- Introduction. Several pattern recognition problems have the follow-
ing abstract formulation. Finite disjoint sets of data A = {ai,...,a,},
B ={by,...,b} are given in R™. Elements a, are ezamples and elements b;
are counterezamples. A subset R of R™ recognizes data A against data B
or simply recognizes, if A C intR and B C int(R™ — B). See next section
for notation. In this definition the interiors are preferred instead of the sets
themselves in order to avoid numerical unstability. It will also be said that
R fits the data. The pattern recognition problem consists in specifying a set
R that fits the data. The specification could be an explicit formula for the
characteristic function Xg of R. Without further requirements the problem
has many answers, for example the trivial one R =union of open balls with
small enough radii centered at points of A, but in general this is not a useful
region. A good solution is a region R that fits and additionally predicts data,
that is, if new examples a}, ..., als, or counterexamples by, ..., b;, are added
then R still fits the data sets A U {a;,.. .,a;,} and B U {b,,.. .,b;,}. If R
fits but is too small, a situation known as overfitting, new examples may not
belong to R. If on the contrary R is too large, referred to as underfitting,

Crespin: Pattern recognition with untrained perceptrons. 2

new counterexamples may belong to R. Therefore the criteria used to select
examples and counterexamples have to be analyzed in order to extract the
formal rules they contain, an often difficult task. When the formal rules
become explicitly known the construction of a good R should be facilitated.
But in the last analysis pattern recognition problems can be considered not
well posed because the addition of examples and counterexamples, in prin-
ciple an arbitrary procedure and part of the definition of a good set, may
modify the requirements on R in unforeseen ways. So, rather than attempt-
ing an unsolvable problem, the algorithms proposed provide a practical tool
whose actual performance has to be carefully checked in each particular ap-
plication. In spite of these practical aims, this paper is essentially theoretical
and offers no numerical results.

A procedure much employed in pattern recognition is to select a linear per-
ceptron neural network architecture and initial weights, replace discontinuous
thresholds by sigmoids and train by backpropagation using the given data
until certain new weights are obtained. The hope is that when the new
weights and old discontinuous thresholds are used the output of the network
is 1 fora € Aand 0 for b € B. In [3] it is proved that the functions defined by
linear perceptron networks are always characteristic functions of linear poly-
hedra. Therefore perceptron approaches to pattern recognition consist in the
construction of the characteristic function of a polyhedron expecting that it
fits the data and is a good region. The polyhedron is initially chosen more or
less at random (architecture and initial weights) and then it is moved around
trying to make it fit the data (training). Metaphorically, a nervous system
is randomly initialized and then interaction with the enviroment modifies
the setup until certain optimum configuration is reached. The difficulty with
this method is that, additionally to unwanted and unpredictable over and
underfitting, the chosen architecture could be inadequate and the training
may take too long or may even result in a polyhedron that does not fit the
data.

It would be useful to have an efficient method that tells how to choose a
perceptron architecture and initial weights. If training has to be applied to
these initial elements, the method should anticipate the number of necessary
iterations. After training the region should fit the data and have reasonable
prediction properties for the recognition task.

Crespin: Pattern recognition with untrained perceptrons. 3

Such method is explained in this paper. It is shown here how to construct a
polyhedron that fits given data. Knowing the polyhedron, the theorems in [7]
and [4] indicate how to choose an architecture and weights so that the linear
perceptron equals the characteristic map of the polyhedron. According to this
method the number of training iterations is zero: the polyhedron always fits.
The effect of posterior use of backpropagation or other training procedures
to fine tune the weights and modify the fitting of the polyhedron to data has
yet to be be methodically explored.

Mathematically the pattern recognition method proposed is simple and nat-
ural. Is there an analogous neurophysiological learning mechanism? The
author does not know the answer.

2.- Terminology and notation. The interior of a set X, in the sense of
elementary topology will be denoted intX. A characteristic indicator or just
indicator is a cartesian product of characteristic functions. A, B are finite,
non-empty disjoint sets in R™. Linear forms are non-homogeneous linear
maps f:R™ = R, f(21,...,2,) = wo + w121 + - -+ + W&y 1t will be al-
ways assumed that linear forms are non-constant, that is, (wq,...,wm,) # 0.
Denote by h a Heaviside function. These can be the open Heaviside function
h = h=characteristic function of the open half-line (0, 00), or the closed Heav-
iside function h = h=characteristic function of the closed half-line [0, 00). A
linear perceptron wnit, or simply perceptron when the context allows, is a
composition p = he° f with f=linear form and A=Heaviside function. Let
a,b € R™. The linear form f separates a and b if f(a)f(b) < 0. This
means that a and b lie in opposite sides of the hyperplane f = 0 and is
equivalent to f(a) < 0 < f(b) or f(b) < 0 < f(a). To emphasize that
the inequalities are strict the term strict separation will be sometimes used.
Note that if sgn : R — {—1,0,1} C R is the sign function, sgn(0) = 0
and sgn(r) = 7/|r| for 7 # 0, then f separates a and b if and only if
sgnf(a)sgnf(b) = —1. Consider a perceptron p = he f. The half spaces of
p is, by definition, H = H(p) = p~*(1). Separation will also be expressed
saying that the hyperplane f = 0, the perceptron p = he f, the half space
H(p) and the complemetary half-space R™ — H(p) separate a and b. Note
that because separation is strict, if f separates @ and b then a belongs to the
open half space int(p~'(p(a)), b belongs to the open half-space int(p~(p(b))
and these half spaces are disjoint. For a, band p = h° f define the separation

Crespin: Pattern recognition with untrained perceptrons. 4

index v = v(f;a,b) = v(p;a,b) of f, or of p, on the pair (a,b) as vy = 1if f
separates @ and b and v = 0 otherwise.

A collection fi,..., f, of forms separates A ={ay,...,as} and B = {by, ...,
b:} if for each a; € A and b; € B there exists at least one fi in the collection
with v(fe;ai,b;) = 1. The separation matriz of fis I' = I'(f; A, B) = (vi;)
with vi; = v(f;ai,b;). This matrix tells which pairs (a,b) are separated
by f. The total of such pairs v(I'(f)) = v(I'(f; A, B)) = >, ;v(f;a:,b;)
is the separation number. Let max(«, 3) denote the maximum of the num-
bers a and 3 and consider the entrywise the maximum of matrices given
by max((mi;), (ni;)) = (max(m;, ni;)). If 1™ = max(L(f,),...,T(f,)) then
the forms fi,..., f. separate A and B if and only if ' = 1 where 1 is the
matrix with all entries equal to 1. All the discussion and results of this paper
are formulated over tha real number system R, but with minor modifications
they remain valid for the rational number system Q.

3.- Choice of forms. Of the various possible ways to choose forms that
separate points the most straightforward will be discussed now. If the data
consist of a single example, A = {a}, and a single counterexample, B = {b},
separation can be realized by the hyperplane containing the middle point
%(a + b) and perpendicular to the line segment joining a and b. This has
equation f,3 = 0 where fop(z) = (b—a) -z — 3(a —b)- (b4 a). The form
fap and the perceptron p,p = h° f,p separate a and b. More generally, and
depending on the specific recognition task, the perpendicular hyperplane can
be taken through any point a 4 to(b — a) (0 < tg < 1) of the segment, the
equation being fup4, = 0 with fopu(2) = (b — a)-x(b— a)-(a + to(b — a)).
Values of ty smaller than % give hyperplanes closer to a and eventually, for
small enough positive ty, a tendency to overfitting. Values closer to 1 will
produce hyperplanes closer to b and a tendency to underfitting. In the rest
of this paper the value t; = 1 will be assumed. In practice other values

2
can be taken depending on the specific task. For sets with several elements,

A=Aay,...,as}, B ={by,...,b}, the collection of forms fo,p;, 1 <1 < s,
1 < j <t separates A and B.

4.- An algorithm for minimality. It will often be desirable to reduce
the number of forms being used to separate A and B. A collection of forms
fi,..., fn separating sets A and B is minimal if no proper subcollection

Crespin: Pattern recognition with untrained perceptrons. 5

separates the sets. Any separating collection contains minimal subcollec-
tions. The following algorithm succesively calculates the matrices ') =
maxleF(fij) and stops when I'®) = 1. The forms already examined are
those with indices in I, and the forms with indices in J, are the ones to
be included in the minimal collection. At step k if f;, separates new pairs
(a,b) then it is selected to be part of the minimal collection. Otherwise it is

discarded and the algorithm is iterated again.

Start with & = 1, ['© =0, Jy = I = 0, choose i; € {1,...,n} and iterate
the following.

Step k.
Data: IT®), Jo_y C Ly C{1,...,n}, ix € {1,...,n} — Ly
Let Ik = Ik—l U {Lk}
For each (a,b) € A x B
If sgn(fi, (a)) -sgn(fi, (0)) - (1 = g ™) <0 then my) = 1
Else, m®) = m-1)
3 ab ab
Next (a,b)
If 1k =
Gamma*=Y then J; = Jk—1, choose 1541 and go to step £+ 1
Else, Jx = Jr—1 U {1x}
If I®) =1 then J = Jj and stop
Else, choose 1541 € {1,...,n} — I and go to step k + 1.

The algorithm stops after at most |.J| < n iterations and the forms {f;|7 € J}
are a minimal collection separating A and B. If a small number of iterations
is desired the indices 1; should be chosen in decreasing order of separation
numbers v(I'(f;,) > v(I'(f;,) > ---. This requires the previous calculation of
the numbers and ordering of the indices.

5.- Cells. A linear cell in R™, or simply cell, is a finite intersection of
linear half-spaces. Consider a collection fi,..., f, of forms in R™ defining
perceptrons p; = hy° f1,...,pn = hyn° fn, by @ Heaviside function. These per-
ceptrons define linear half-spaces H; = p;'(1). The kernel of the collection
of forms, also kernel of the perceptrons, is defined as ker = ker(fy,..., fn) =
ker(pi,...,pn) = Ny £77(0). This kernel is an affine subspace of R™, pos-

Crespin: Pattern recognition with untrained perceptrons. 6

sibly empty.

A cell indez is a pair ¥ = (Io, [;) with I; C {l,...,n} and Iy, N I; = (. By
definition the linear cell of ¥ is Cx, = (N;es, (R™ — Hi)) N (MNier, Hi).

Given forms as above for any a € R™ let Iy(a) = {i|fi(a) < 0} and [(a)
{i|fi(a) > 0}. Note that a is in the kernel if and only if Iy = I, =
Define the cell index of a as ¥(a) = (Iy(a), I1(a)) and the cell of a as C(a)
Csa) = (Nicto(a)(R™ — Hi)) N (MNier, (a) Hi)- The condition a ¢ ker implies
that a € intC(a) C C(a) # R™. But if the forms separate a and b then
then neither @ nor b are in ker, so that b € intC(b) C C(b) # R™ and
C(a)NC(b) = 0.

=l

6.- Polyhedra. A linear polyhedron in R™, or simply polyhedron, is a fi-
nite union of linear cells. Consider again linear forms f; : R™ — R with
perceptrons p; = h;° f; and half spaces H; = p;'(1). A polyhedron in-
dez is a collection T' = {¥,...,3,} of cell indices; it defines a polyhedron
P(T) = U}, Cy,. Given a finite non-empty set A = {ay,...,a,} C R™ define
the polyhedron index of Aas T(A) = {¥(a1),...,%(a,)} and the ipolyhedron
of Aas P(A) = P(T(A)) = Ui, Cxa;)- If ANker = () then A C intP(A). Let
B = {by,...,b;} C R™ be finite, non-empty and disjoint from A. If the forms
fi separate A and B then A C intP(A), B C intP(B) and P(A)NP(B) = (.
Therefore P(A) (and R™ — P(B) as well) fit the data.

The perceptron algebra P=P (fi,..., f.)=P (p1,...,pn) is the algebra of
subsets of R™ generated by the half-spaces of the perceptrons. Recall that
this is the smallest collection of subsets of R™ that contains the half spaces
and is closed under intersections, unions and complements. This algebra has
finitely many members, these can always be expressed as a finite union of
finite intersections of the generating half-spaces and therefore they are linear
polyhedra. For any finite set A C R™, A C P(A) € A. It is proved in [3]
that for any linear perceptron neural network the outputs are characteristic
functions of polyhedra belonging to P (p1,...,p,) where py,...,p, are the
perceptrons of the first layer.

The following algorithm calculates the polyhedron index T'(A). Start with
k=1, Ay = A, choose aj, € A, and iterate the following:

Crespin: Pattern recognition with untrained perceptrons. 7

Step k.
Data: Ay, a;, € Ag
Calculate pi(aj,),...pn(a;,)
Let (k) = {ilpi(az,) = 0}, 1i(k) = {ilpi(az,) = 1.
Let Zk = (Io(k‘),fl(k‘)), Ak-l—l = {CL]‘ € Ak|a]‘ Qé Cgk}
If Agyy = 0 then stop
Else, choose a;,,, € Arq1 and go to step k + 1.

Let T ={¥%;,...,%,}. By construction ay € Csx,, |Ak| < |Ak+1], the iteration
terminates after ¢ < s steps and A € Cg, U--- U Cy, = Pr. In general,
different choices of a; € Ay result in different polyhedra.

An equivalent version of the algorithm in terms of the matrix M = (p;(a;))
is the following. Let M, be the j —th column of M. Recall that the support
of a vector © = (x1,...,x,) is supp(z) = {¢|z; # 0}. Start with & = 1,
Jiy ={1,...,n}, choose j; € J; and iterate the following:

Step k.
Data: Ji C{1,...,n}, jx € Ji, M,
Let I (k) = supp(d;,), lo(k) ={1,...,n} — I,(k)
Let S = (To(k), 1 (), Jows = 1 € Julsupp(M;) £ 1,(k)}
If Jpy1 = 0 then stop

Else, choose jry1 € Jry1, calculate M, |

and go to step k + 1.

According to [4], the characteristic function of P(A) is equal to a three layer
linear perceptron neural network. The network architecture and weights are
given explicitly. Therefore the previous procedure together with [4] provides
an efficient algorithm to solve pattern recognition problems by means of per-
ceptron networks, provided that the data consists of examples and counterex-
amples. The various steps involved in the calculation of the neural network
will be resumed now.

STEP A. Calculation of first layer.

Data: Finite non-empty disjoint sets A, B in R™.

Algorithm: Bias weight —2(b — a)-(b + a) and variable inputs weights the
components of (b — a), where a € A, b € B. See section 3.

Crespin: Pattern recognition with untrained perceptrons. 8

Output: Coefficients of the forms separating A and B, equal to the weights
of the first layer.

STEP B. (OPTIONAL) Ordering the forms.

Data: Set of forms separating A and B.

Algorithm: Left to the reader. See end of section 4.

Output: Set of forms separating A and B ordered by decreasing separation
numbers.

STEP C. (OPTIONAL) Minimizing the number of forms.
Data: Set of forms separating A and B.

Algorithm: See section 4.

Output: Minimal set of forms separating A and B.

STEP D. Calculation of polyhedron index.

Data: Set of forms separating A and B.

Algorithm: See section 5.

Output: A polyhedron index with corresponding polyhedron that fits the

original data.

STEP E. Definition of the neural network.

Data: Polyhedron index.

Algorithm: See sections 3 and 4 of [4].

Output: Architecture and weights of a three linear perceptron neural network

equal to the characteristic function of a linear polyhedron that fits the data
sets A, B.

7.- Multiple recognition. Let A;,..., A, be finite, non-empty and mu-
tually disjoint sets in R™, to be called data sets or simply data. Define
By = Uz, Aj so that AgyUBy = Ay U---UA, and Ay N By, = (). The regions
Ry,..., R, recognize or fit the data if they have mutually disjoint interiors
and, for all k, Ay C Ry. The multiple recognition problem is: Given data
sets define recognizing regions. As before, the regions are good if they predict
new data. For example, if A, B, R are as in section 1, take A; = A, A, = B,
R, = R and R, = R™ — R. Then Ry, R, recognize the data sets A;, A,.

Characters of an alphabet give rise to typical multiple recognition problems.

Crespin: Pattern recognition with untrained perceptrons. 9

A collection fi,..., f, of linear forms (mutually) separates Ay, ..., A, if for
all ¢ # 7, given a € A; and @’ € A; there exists a f; that separates a and a'.
Equivalently, if for all £ the forms separate Ay and By. It follows that

Theorem. Data sets Ay, ..., A, are recognized by the polyhedra P(A;), ...,
P(A,) if and only tf the linear forms mutually separates the sets.

Neural networks for multiple recognition of data sets Ay,..., A, involve the
following procedures:

STEP MA. Calculation of first layer.

Data: Sets A;,..., A, in R™.

Algorithm: For all k& and for all @ € Ay and b € By, bias weight=—2(b —
a)-(b+ a); variable inputs weights=components of (b — a). See section 3.
Output: Coeflicients of the linear forms mutually separating the data, equal
to the weights of the first layer. So, the maximum number of perceptron units
in the first layer equals 37, ;(|A4i| - |4;]). In general minimization lowers this
number.

STEP MB. (OPTIONAL) Ordering the forms.

Data: Coefficients of forms mutually separating the data.

Algorithm: For each form f and for all k calculate v(f; A, Bx), and let the
multiple separation number be v(f) = v(f; Aq,..., A,) be the maximum over
k. See end of section 4.

Output: Coeflicients of forms mutually separating data, ordered by decreas-

ing multiple separation numbers v(f1) > v(fy) > ---

STEP MC. (OPTIONAL) Minimizing the number of forms.

Data: Coeflicients of forms mutually separating data.

Algorithm: Minimize the set of forms needed to separate A; and Bj; add
forms, as necessary, to separate also A; and Bsy; add still more, to separate
Az and Bs, and so on. See section 4.

Output: Minimal set of forms mutually separating the data.

STEP MD. Calculation of polyhedron index.
Data: Set of forms mutually separating data.

Crespin: Pattern recognition with untrained perceptrons. 10

Algorithm: For each k apply section 5 to Ay, Bk.
Output: A set of polyhedron indices with corresponding polyhedra that fit
the original data.

STEP ME. Definition of the neural network.

Data: Set of polyhedron indices.

Algorithm: See [4], sections 3 and 4.

Output: Architecture and weights of a three layer linear perceptron neural
network equal to the indicator of linear polyhedra that fit the data sets

Ay A

REFERENCES

[1] Crespin, D. Neural Network Formalism. To appear.

[2] Crespin, D. Generalized Backpropagation. To appear.

[3] Crespin, D. Geometry of Perceptrons. To appear.

[4] Crespin, D. Neural Polyhedra.

[5] Crespin, D. Pattern recognition with untrained perceptrons (this present
paper).

[6] Crespin, D. Feature Extraction. To appear.

[

]
7] Lippmann, D. Introduction to Neural Networks.

Daniel Crespin
dcrespin@euler.ciens.ucv.ve

Caracas, December 4, 1995.

